Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Plotting missing points and branches of real parametric curves

dc.contributor.authorAndradas Heranz, Carlos
dc.contributor.authorRecio, Tomás
dc.date.accessioned2023-06-20T09:31:37Z
dc.date.available2023-06-20T09:31:37Z
dc.date.issued2007
dc.description.abstractThis paper is devoted to the study (from the theoretic and algorithmic point of view) of the existence of points and branches non-reachable by a parametric representation of a rational algebraic curve (in n-dimensional space) either over the field of complex numbers or over the field of real numbers. In particular, we generalize some of the results on missing points in (J. Symbolic Comput. 33, 863-885, 2002) to the case of space curves. Moreover, we introduce for the first time and we solve the case of missing branches. Another novelty is the emphasis on topological conditions over the curve for the existence of missing points and branches. Finally, we would like to point out that, by developing an "ad hoc" and simplified theory of valuations for the case of parametric curves, we approach in a new and unified way the analysis of the missing points and branches, and the proposal of the algorithmic solution to these problems.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14738
dc.identifier.doi10.1007/s00200-006-0032-7
dc.identifier.issn0938-1279
dc.identifier.officialurlhttp://www.springerlink.com/content/583523j1g368q323/
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49811
dc.issue.number1-2
dc.journal.titleApplicable Algebra in Engineering Communication and Computation
dc.language.isoeng
dc.page.final126
dc.page.initial107
dc.publisherSpringer
dc.relation.projectIDMTM2005-02865.
dc.relation.projectIDMTM2005-08690-C02-02
dc.relation.projectIDHPRN-CT-2001-00271
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordParametric curves
dc.subject.keywordNormal parametrization
dc.subject.keywordBranches
dc.subject.keywordValuation rings
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titlePlotting missing points and branches of real parametric curves
dc.typejournal article
dc.volume.number18
dcterms.references1. Abhyankar, S.: Algebraic Geometry for Scientists and Engineers, Mathematical Surverys and Monographs vol. 35 American Mathematical Society, Providence. 1990 2. Alonso, C., Gutierrez, J., Recio, T.: Real parametric curves: some symbolic algorithm issues. 14th IMACS (Institute for Mathematics and Computers in Simulation) World Symposium. Atlanta (1994) 3. Alonso, C., Gutierrez, J., Recio, T.: Reconsidering algorithms for real parametric curves. J. AAECC 6, 345–352 (1995) 4. Alonso, C., Gutierrez, J., Recio, T.: A rational fuction decomposition algorithm by near separated polynomials. J. Symbolic Comput. 19, 527–544 (1995) 5. Bajaj, C., Royappa, A.: Finite representations of real parametric curves and surfaces.Technical Report, CAPO report CER-92-28, Purdue University. Also in International J. Comput. Geometry Appl. 5, 313–326 (1995) 6. Canny, J., Manocha, D.: Rational curves with polynomial parametrization. Comput-Aided Des. 23, 645–652 (1991) 7. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Undergraduate Texts in Mathematics. Springer, Berlin Heidelberg New York (1991) 8. Chou, S.C., Gao, X.S.: On the normal parametrization of curves and surfaces. Int. J. Comput. Geometry Appl. 1, 125–136 (1991) 9. Gonzalez-Lopez, M.J.,Recio, T., Santos, F.: Parametrization of semialgebraic sets.Math. Comput. Simul. 46, 353–362 (1996) 10. Lang, S.: Algebra. Graduate Texts in Mathematics, 3rd edn. Springer, Berlin Heidelberg New York (2002) 11. Sederberg, T.W.: Improperly parametrized rational curves. Comput-Aided Geometric Des. 3, 67–75 (1986) 12. Sendra, J.R.: Normal parametrizations of algebraic plane curves. J. Symbolic Comput. 33, 863– 885 (2002) 13. Walker, R.: Algebraic Curves. Dover, New York (1950)
dspace.entity.typePublication
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication.latestForDiscoverya74c23fe-4059-4e73-806b-71967e14ab67

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
03.pdf
Size:
295.79 KB
Format:
Adobe Portable Document Format

Collections