Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Nonsmooth Morse–Sard theorems

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorFerrera Cuesta, Juan
dc.contributor.authorGómez Gil, Javier
dc.date.accessioned2023-06-17T21:59:26Z
dc.date.available2023-06-17T21:59:26Z
dc.date.issued2017
dc.description.abstractWe prove that every function f:Rn→R satisfies that the image of the set of critical points at which the function f has Taylor expansions of order n−1 and non-empty subdifferentials of order n is a Lebesgue-null set. As a by-product of our proof, for the proximal subdifferential ∂P, we see that for every lower semicontinuous function f:R2→R the set f({x∈R2:0∈∂Pf(x)}) is L1-null.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/43784
dc.identifier.doi10.1016/j.na.2017.05.006
dc.identifier.issn0362546X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0362546X17301347
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17898
dc.journal.titleNonlinear Analysis, Theory, Methods and Applicatioms
dc.language.isoeng
dc.page.final69
dc.page.initial53
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordMorse–Sard theorem
dc.subject.keywordTaylor polynomial
dc.subject.keywordSubdifferential
dc.subject.keywordNonsmooth
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleNonsmooth Morse–Sard theorems
dc.typejournal article
dc.volume.number160
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublication88621a6e-cb08-45cc-a43e-43a388119938
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Azagra36.pdf
Size:
845.12 KB
Format:
Adobe Portable Document Format

Collections