Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Nonsmooth Morse–Sard theorems

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorFerrera Cuesta, Juan
dc.contributor.authorGómez Gil, Javier
dc.date.accessioned2023-06-17T21:59:26Z
dc.date.available2023-06-17T21:59:26Z
dc.date.issued2017
dc.description.abstractWe prove that every function f:Rn→R satisfies that the image of the set of critical points at which the function f has Taylor expansions of order n−1 and non-empty subdifferentials of order n is a Lebesgue-null set. As a by-product of our proof, for the proximal subdifferential ∂P, we see that for every lower semicontinuous function f:R2→R the set f({x∈R2:0∈∂Pf(x)}) is L1-null.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/43784
dc.identifier.doi10.1016/j.na.2017.05.006
dc.identifier.issn0362546X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0362546X17301347
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17898
dc.journal.titleNonlinear Analysis, Theory, Methods and Applicatioms
dc.language.isoeng
dc.page.final69
dc.page.initial53
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordMorse–Sard theorem
dc.subject.keywordTaylor polynomial
dc.subject.keywordSubdifferential
dc.subject.keywordNonsmooth
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleNonsmooth Morse–Sard theorems
dc.typejournal article
dc.volume.number160
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublication88621a6e-cb08-45cc-a43e-43a388119938
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Azagra36.pdf
Size:
845.12 KB
Format:
Adobe Portable Document Format

Collections