Atomistic mechanisms triggered by Joule heating effects in metallic Cu-Bi nanowires for spintronics

dc.contributor.authorGuedeja-Marrón Gil, Alejandra
dc.contributor.authorBeltrán Fínez, Juan Ignacio
dc.contributor.authorSaura Múzquiz, Matilde
dc.contributor.authorPerna, Paolo
dc.contributor.authorMuñoz de Pablo, Maria del Carmen
dc.contributor.authorPérez García, Lucas
dc.contributor.authorVarela Del Arco, María
dc.date.accessioned2025-12-01T19:30:46Z
dc.date.available2025-12-01T19:30:46Z
dc.date.issued2025-11-21
dc.description© 2025 The Author(s). AD2D-UCM3 101109595 (MAGWIRE)
dc.description.abstractJoule heating may severely impact the response to electric current injection of nanomaterials for spintronics. Here, the effects of heating in Bi doped Cu nanowires, a system where 1% Bi doping promotes a giant spin Hall effect (SHE), are studied by in situ high resolution electron microscopy. High quality Bi-Cu nanowires are grown by room temperature electrodeposition. The large size of Bi cations precludes insertion into the dense Cu face-centered lattice. Still, homogeneous compositions up to a nominal 7% Bi are successfully obtained with thicknesses <100 nm and grain sizes in the micron longitudinal scale, coated by a native oxide. In situ injection of current promotes fast Bi segregation out of solution. Controlled in situ annealing shows that the onset for segregation starts above temperatures of 250 °C. Within minutes, Bi atoms diffuse to grain boundaries or to exposed surfaces, such as the nanowire tips. Monoatomic thick Bi ordered decorations appear, preferentially on surface planes of the (Formula presented.) type. Annealing at 400 °C promotes the growth of pure Bi nanocrystals, coherent with the underlying Cu matrix. Still, the intra-grain Bi concentration remains finite at values near 1%. Density-functional theory calculations show that small amounts of Bi atoms are stable as substitutional impurities, confirming the potential of this system as building block for future spintronic devices.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationA. Guedeja‐Marrón, J. Ignacio Beltrán, M. Saura‐Múzquiz, P. Perna, M. Carmen Muñoz, L. Pérez, M. Varela, Advanced Materials 2025, e13602.
dc.identifier.doi10.1002/adma.202513602
dc.identifier.essn1521-4095
dc.identifier.issn0935-9648
dc.identifier.officialurlhttps://doi.org/10.1002/adma.202513602
dc.identifier.relatedurlhttps://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202513602
dc.identifier.urihttps://hdl.handle.net/20.500.14352/128253
dc.journal.titleAdvanced Materials
dc.language.isoeng
dc.page.final13602-11
dc.page.initial13602-1
dc.publisherWiley
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122980OB-C51/ES/ESTUDIOS DE FENOMENOS ATOMISTICOS EN MATERIALES MULTIFUNCIONALES A TRAVES DE TECNICAS IN-SITU/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122980OB-C52/ES/CONTROL ELECTRICO DE LAS INTERACCIONES ESPIN-ORBITA Y DE NANOTEXTURAS MAGNETICAS/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-129254B-C21
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/RED2022-134649-T/SPINRED2: EXPLORANDO EL USO DE LA ESPINTRONICA PARA EL DESARROLLO DE DISPOSITIVOS DE BAJO CONSUMO DE ENERGIA/ES/
dc.relation.projectIDEC-2024/TEC-380
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu538.9
dc.subject.cdu620.3
dc.subject.keywordElectron energy-loss spectroscopy
dc.subject.keywordIn situ characterization
dc.subject.keywordNanosystems
dc.subject.keywordScanning transmission electron microscopy
dc.subject.keywordSpintronics
dc.subject.ucmFísica de materiales
dc.subject.unesco2211 Física del Estado Sólido
dc.titleAtomistic mechanisms triggered by Joule heating effects in metallic Cu-Bi nanowires for spintronics
dc.typejournal article
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication815d30b9-6f4b-4d8b-b8a7-e41e13b1b932
relation.isAuthorOfPublication4e2ad5cb-9ebe-40f4-8dcb-6d6f60066da5
relation.isAuthorOfPublication0c3bea95-8dcc-4d97-bce9-76a8af69213e
relation.isAuthorOfPublication01b88344-8278-4947-9475-d5b2a652b9d7
relation.isAuthorOfPublication63e453a5-31af-4eeb-9a5f-21c2edbbb733
relation.isAuthorOfPublication.latestForDiscovery815d30b9-6f4b-4d8b-b8a7-e41e13b1b932

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
41_CuBi_AlejandraGuedeja_AdvMater_2025_free.pdf
Size:
6.17 MB
Format:
Adobe Portable Document Format
Description:
Postprint. Supporting information (Video S1, Video S2)
Loading...
Thumbnail Image
Name:
Advanced Materials (2025), e13602.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format
Description:
Online Version of Record before inclusion in an issue e13602. Article under the terms of the CreativeCommons Attribution-NonCommercial-NoDerivs License.

Collections