Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The structure of solutions near an extinction point in a semilinear heat equation with strong absorption: a formal approach

dc.book.titleNonlinear diffusion equations and their equilibrium states
dc.contributor.authorGalaktionov, V. A.
dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.contributor.editorLloyd, N. G.
dc.contributor.editorNi, W. M.
dc.contributor.editorPeletier, L. A.
dc.contributor.editorSerrin, J.
dc.date.accessioned2023-06-20T21:07:55Z
dc.date.available2023-06-20T21:07:55Z
dc.date.issued1992
dc.descriptionProceedings of the conference held in Gregynog, Wales, August 20–29, 1989
dc.description.abstractWe consider nonnegative solutions of the semilinear parabolic equation u t —u xx + u p = 0, -∞<x< +∞, t>0, 0<p<l, which vanish at the extinction point x = 0 at a time t = T. By means of formal methods, we derive a family of asymptotic expansions for solutions and interface curves (these last separating the regions where u = 0 and u> 0), as (x,t) approaches (0,T).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22708
dc.identifier.doi10.1007/978-1-4612-0393-3_16
dc.identifier.isbn978-1-4612-6741-6
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007/978-1-4612-0393-3_16
dc.identifier.relatedurlhttp://www.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60766
dc.issue.number7
dc.page.final236
dc.page.initial215
dc.page.total572
dc.publication.placeBoston
dc.publisherBirkhäuser
dc.relation.ispartofseriesProgress in Nonlinear Differential Equations and their Applications
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.956.4
dc.subject.keywordSemilinear parabolic equation
dc.subject.keywordextinction point
dc.subject.keywordformal methods
dc.subject.keywordfamily of asymptotic expansions
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleThe structure of solutions near an extinction point in a semilinear heat equation with strong absorption: a formal approach
dc.typebook part
dc.volume.number3
dcterms.referencesH. Brezis and A. Friedman, Estimates on the support of solutions of parabolic variational inequalities, Illinois J. Math., 20(1976), 82–98. X. Chen, H. Matano and M. Mimura, Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption, to appear. L. C. Evans and B. F. Knerr, Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities, Illinois J. Math. 23 (1979), 153–166. A. Friedman and M. A. Herrero, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal, and Appl. 124 (1987), 530–546. A. Friedman and J. B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425–447. V. A. Galaktionov, M. A. Herrero and J. J. L. Velázquez, The space structure near a single point blow-up for semilinear heat equations: A formal approach, to appear. A. S. Kalashnikov, The propagation of disturbances in problems of nonlinear heat conduction with absorption USSR Comp. Math. Phys. 14(1974), 70–85.
dspace.entity.typePublication

Download