Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Local fixed point indices of iterations of planar maps

dc.contributor.authorRomero Ruiz del Portal, Francisco
dc.contributor.authorGraff, Grzegorz
dc.contributor.authorNowak-Przygodzki, Piotr
dc.date.accessioned2023-06-20T00:07:15Z
dc.date.available2023-06-20T00:07:15Z
dc.date.issued2011
dc.description.abstractLet f : U →R2 be a continuous map, where U is an open subset of R2. We consider a fixed point p of f which is neither a sink nor a source and such that p is an isolated invariant set. Under these assumption we prove, using Conley index methods and Nielsen theory, that the sequence of fixed point indices of iterations ind(fn, p) n=1 is periodic,bounded by 1, and has infinitely many non-positive terms, which is a generalization of Le Calvez and Yoccoz theorem [Annals of Math., 146 (1997), 241-293] onto the class of non-injective maps. We apply our result to study the dynamics of continuous maps on 2-dimensional sphere.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMSHE
dc.description.sponsorshipMICINN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/13994
dc.identifier.doi10.1007/s10884-011-9204-7
dc.identifier.issn1040-7294
dc.identifier.officialurlhttp://www.springerlink.com/openurl.asp?genre=journalissn=1040-7294
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42017
dc.issue.number1
dc.journal.titleJournal of Dynamics and Differential Equations
dc.language.isoeng
dc.page.final223
dc.page.initial213
dc.publisherSpringer
dc.relation.projectIDN N201 373236
dc.relation.projectIDMTM2006-0825.
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.keywordFixed point index
dc.subject.keywordConley index
dc.subject.keywordNielsen number
dc.subject.keywordPeriodic points
dc.subject.keywordIterations
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleLocal fixed point indices of iterations of planar maps
dc.typejournal article
dc.volume.number23
dcterms.references[1] I. K. Babenko and S. A. Bogatyi, The behavior of the index of periodic points under iterations of a mapping, Math. USSR Izv., 38 (1992), 1-26. [2] N. Bernardes, On the set of points with a dense orbit, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3421-3423. [3] S. A. Bogatyi, Local indices of iterations of a holomorphic mapping. (Russian) General topology. Spaces and mappings, 48{61, Moskov. Gos. Univ., Moscow, 1989. [4] S. N. Chow, J. Mallet-Parret, J. A. Yorke, A periodic point index which is a bifurcation invariant, Geometric dynamics (Rio de Janeiro, 1981), 109-131, Springer Lecture Notes in Math. 1007, Berlin 1983. [5] A. Dold, Fixed point indices of iterated maps, Invent. Math. 74 (1983), 419-435. [6] N. Fagella, J. Llibre, Periodic points of holomorphic maps via Lefschetz numbers, Trans. Amer. Math. Soc. 352 (2000), no. 10, 4711-4730. [7] J. Franks, The Conley index and non-existence of minimal homeomorphisms, Illinois J. Math., 43 (1999), no. 3, 457-464. [8] J. Franks and D. Richeson, Shift equivalence and the Conley index Trans. Amer. Math. Soc. 352 (2000), no. 7, 3305-3322. [9] G. Graff and P. Nowak-Przygodzki, Fixed point indices of iterations of C1 maps in R3, Discrete Cont. Dyn. Syst. 16 (2006), no. 4, 843-856. [10] G. Graff and P. Nowak-Przygodzki, Sequences of fixed point indices of iterations in dimension 2, Univ. Iagel. Acta Math., XLI (2003), 135-140. [11] J. Jezierski and W. Marzantowicz, Homotopy methods in topological fixed and periodic points theory, Topological Fixed Point Theory and Its Applications, 3. Springer, Dordrecht, 2005. [12] B. J. Jiang, Bounds for fixed points on surfaces, Math. Ann. 311 (1998), no. 3, 467-479. [13] B. J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence 1983. [14] P. Le Calvez, Dynamique des homomorphismes du plan au voisinage d'un point fixe, Ann. Sci. École Norm. Sup. (4) 36, (2003), no. 1, 139-171. [15] P. Le Calvez and J.-C. Yoccoz, Un théoreme d'indice pour les hom_eomorphismes du plan au voisinage d'un point fixe, Annals of Math., 146 (1997), 241-293. [16] K. Mischaikow, M. Mrozek, Conley index. Handbook of dynamical systems, Vol. 2, 393-460, North-Holland, Amsterdam, 2002. [17] W. Marzantowicz and P. Przygodzki, Finding periodic points of a map by use of a k-adic expansion, Discrete Contin. Dyn. Syst. 5 (1999), 495-514. [18] R. Daniel Mauldin (red), The Scottish Book, Birkhäuser, Boston 1981. [19] F. Ruiz del Portal and J.M. Salazar, A Poincaré formula for the fixed point indices of the iterations of planar homeomorphisms, preprint. [20] F. Ruiz del Portal, J.M Salazar, A stable/unstable manifold theorem for local homeo-morphisms of the plane, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 301-317. [21] F. R. Ruiz del Portal and J. M. Salazar, Fixed point index of iterations of local homeomorphisms of the plane: a Conley index approach, Topology, 41 (2002), no. 6, 1199-1212. [22] F. Ruiz del Portal and J.M. Salazar, Indices of the iterates of R3-homeomorphisms at Lyapunov stable fixed points, J. Diff. Eq. 244 no. 5 (2008), 1141-1156. [23] M. Shub, P. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps, Topology 13 (1974), 189-191. [24] G.Y. Zhang, Fixed point indices and invariant periodic sets of holomorphic systems, Proc. Amer. Math. Soc. 135 (2007), no. 3, 767-776 (electronic). [25] G.Y. Zhang, Fixed point indices and periodic points of holomorphic mappings, Math. Ann. 337 (2007), no. 2, 401-433.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
localfixed.pdf
Size:
195.81 KB
Format:
Adobe Portable Document Format

Collections