Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Torelli theorem for the moduli spaces of connections on a Riemann surface

Loading...
Thumbnail Image

Full text at PDC

Publication date

2007

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science
Citations
Google Scholar

Citation

Abstract

Let (X, x0) be any one-pointed compact connected Riemann surface of genus g, with g > 3. Fix two mutually coprime integers r > 1 and d. LetMX denote the moduli space parametrizing all logarithmic SL(r,C)-connections, singular over x0, on vector bundles over X of degree d. We prove that the isomorphism class of the variety MX determines the Riemann surface X uniquely up to an isomorphism, although the biholomorphism class of MX is known to be independent of the complex structure of X. The isomorphism class of the variety MX is independent of the point x0 2 X. A similar result is proved for the moduli space parametrizing logarithmic GL(r,C)-connections, singular over x0, on vector bundles over X of degree d. The assumption r > 1 is necessary for the moduli space of logarithmic GL(r,C)-connections to determine the isomorphism class of X uniquely.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections