Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Approaching an extinction point in one-dimensional semilinear heat-equations with strong absorption

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T17:05:20Z
dc.date.available2023-06-20T17:05:20Z
dc.date.issued1992-11-01
dc.description.abstractThis paper deals with the Cauchy problem u(t)-u(xx)+u(p)=0; -infinity<x<+infinity, t>o, u(x, 0)=u(0)(x); -infinity<x<+infinity, where 0<p<1 and u(0)(X)is continuous, nonnegative, and bounded. In this case, solutions are known to vanish in a finite time T, and interfaces separating the regions where u(x,t)>0 and u(x,t)=0 appear when t is close to T. We describe here all possible asymptotic behaviours of solutions and interfaces near an extinction point as the extinction time is approached. We also give conditions under which some of these behaviours actually occur.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.sponsorshipEEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17346
dc.identifier.doi10.1016/0022-247X(92)90024-8
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0022247X92900248
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57750
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final381
dc.page.initial353
dc.publisherElsevier
dc.relation.projectIDPB90-0235
dc.relation.projectIDSC1-0019-C
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu536.2
dc.subject.keywordOne-dimensional semilinear heat equations
dc.subject.keywordinterfaces
dc.subject.keywordextinction point
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleApproaching an extinction point in one-dimensional semilinear heat-equations with strong absorption
dc.typejournal article
dc.volume.number170
dcterms.referencesS. B. ANGENENT, The zero set of a solution of a parabolic equation, J. R&e Angew. Math. 390 (1988), 79-96. S. B. ANGENENT AND B. FIEDLER, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. Amer. Math. Soc. 307 (1988), 545-568. H. BREZIS AND A. FRIEDMAN, Estimates on the support of solutions of parabolic variational inequalities, Illinois J. Math. 20 (1976), 82-98. C. BANDLE AND I. STAKGOLD, The formation of the dead core in a parabolic reaction-diffusion equation, Trans. Amer. Math. Soc. 286 (1984), 275-293. X. CHEN, H. MATANO, AND M. MIMURA, Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption, to appear. L. C. EVANS AND B. F. KNERR, Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities, Illinois J. Math. 23 (1979) 153-166. A. FRIEDMAN AND M. A. HERRERO, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal. Appl. 124 (1987), 530-546. V. A. GALAKTIONOV AND S. A. POSASHKOV, Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Differentsial’nye Uravneniya 22, No. 7 (1986), 1165-1173. V. A. GALAKTIONOV, M. A. HERRERO AND J. J. L. VELAZQUEZ, The structure of solutions near an extinction point in a semilinear heat equation with strong absorption: A formal approach, in “Nonlinear Diffusion Equations and Their Equilibrium States” (N. G. Lloyd et al., Eds.), pp. 215-236, Birkhäuser-Verlag, Basel, 1992. Y. GICA AND R. V. KOHN, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985) 297-319. R. E. GRUNDY AND L. A. PELETIER, Short time behaviour of a singular solution to the heat equation with absorption, Proc. Roy. Sot. Edinburgh Sect. A 107 (1987), 271-288. M. A. HERRERO AND J. J. L. VELÁZQUEZ, On the dynamics of a semilinear heat equation with strong absorption, Comm. Partial Differential Equations 14, No. 12 (1989), 1653-1715. M. A. HERRERO, AND J. J. L. VELÁZQUEZ, Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, to appear. M. A. HERRERO AND J. J. L. VELÁZQUEZ, Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations 5, No. 5 (1992), 973-997. A. S. KALASHNIKOV, The propagation of disturbances in problems of nonlinear heat conduction with strong absorption, U.S.S.R. Comput. Math. and Math. Phys. 14 (1974), 70-85. H. G. KAPER AND M. K. KWONG, Comparison theorems and their use in the analysis of some nonlinear diffusion problems, in “Transport Theory, Invariant Embedding and Integral Equations,” pp. 165-178, Dekker, New York, 1989. H. G. KAPER AND M. K. KWONG, Concavity of solutions of certain Emden-Fowler equations, Differential Integral Equations 1 (1988), 327-340. PH. ROSENAU AND S. KAMIN, Thermal waves in an absorbing and convecting medium, Phys. D 8 (1983), 273-283.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero41.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format

Collections