Existence of backward global-solutions to nonlinear dissipative wave-equations
dc.contributor.author | Carpio Rodríguez, Ana María | |
dc.date.accessioned | 2023-06-20T16:51:08Z | |
dc.date.available | 2023-06-20T16:51:08Z | |
dc.date.issued | 1993 | |
dc.description.abstract | Let OMEGA be a bounded smooth domain of R(n). We prove existence of global solutions, i. e. solutions defined for all t is-an-element-of R, for dissipative wave equations of the form: u''-DELTAu+\u'\p-1 u'=0 in (- infinity, infinity) x OMEGA with Dirichlet homogeneous boundary conditions, where 1 < p < infinity if n less-than-or-equal-to 2 or 1 < p less-than-or-equal-to (n + 2)/(n - 2) if n > 2. More precisely, for every solution psi (with constant sign if 1 < p < 2) of an elliptic problem we prove the existence of a solution growing like \t\(p/(p-1)) when t --> - infinity. When OMEGA is unbounded the same existence result holds for p greater-than-or-equal-to 2. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15196 | |
dc.identifier.issn | 0764-4442 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57232 | |
dc.issue.number | 8 | |
dc.journal.title | Comptes Rendus de l'Académie des Sciences. Série I. Mathématique | |
dc.page.final | 808 | |
dc.page.initial | 803 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Backward global solutions | |
dc.subject.keyword | Existence of global solutions | |
dc.subject.keyword | Dissipative wave equations | |
dc.subject.keyword | Dirichlet homogeneous boundary conditions | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Existence of backward global-solutions to nonlinear dissipative wave-equations | en |
dc.type | journal article | |
dc.volume.number | 316 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f301b87d-970b-4da8-9373-fef22632392a | |
relation.isAuthorOfPublication.latestForDiscovery | f301b87d-970b-4da8-9373-fef22632392a |