Thermodynamics of spin chains of Haldane-Shastry type and one-dimensional vertex models
dc.contributor.author | Enciso, Alberto | |
dc.contributor.author | Finkel Morgenstern, Federico | |
dc.contributor.author | González López, Artemio | |
dc.date.accessioned | 2023-06-20T03:55:18Z | |
dc.date.available | 2023-06-20T03:55:18Z | |
dc.date.issued | 2012-11 | |
dc.description | ©2012 Elsevier Inc. All rights reserved. This work was supported in part by the MICINN and the UCM–Banco Santander under grants no. FIS2011-22566 and GR35/10-A-910556. | |
dc.description.abstract | We study the thermodynamic properties of spin chains of Haldane-Shastry type associated with the A(N-1) root system in the presence of a uniform external magnetic field. To this end, we exactly compute the partition function of these models for an arbitrary finite number of spins. We then show that these chains are equivalent to a suitable inhomogeneous classical Ising model in a spatially dependent magnetic field, generalizing the results of Basu-Mallick et al. for the zero magnetic field case. Using the standard transfer matrix approach, we are able to compute in closed form the free energy per site in the thermodynamic limit. We perform a detailed analysis of the chains' thermodynamics in a unified way, with special emphasis on the zero field and zero temperature limits. Finally, we provide a novel interpretation of the thermodynamic quantities of spin chains of Haldane-Shastry type as weighted averages of the analogous quantities over an ensemble of classical Ising models. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MICINN | |
dc.description.sponsorship | UCM–Banco Santander | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/31239 | |
dc.identifier.doi | 10.1016/j.aop.2012.07.010 | |
dc.identifier.issn | 0003-4916 | |
dc.identifier.officialurl | http://dx.doi.org/ 10.1016/j.aop.2012.07.010 | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44671 | |
dc.issue.number | 11 | |
dc.journal.title | Annals of physics | |
dc.language.iso | eng | |
dc.page.final | 2665 | |
dc.page.initial | 2627 | |
dc.publisher | Elsevier Masson | |
dc.relation.projectID | FIS2011-22566 | |
dc.relation.projectID | GR35/10-A-910556 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Spin chains of haldane–shastry type | |
dc.subject.keyword | Vertex models | |
dc.subject.keyword | Transfer matrix method | |
dc.subject.keyword | Thermodynamic limit | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Thermodynamics of spin chains of Haldane-Shastry type and one-dimensional vertex models | |
dc.type | journal article | |
dc.volume.number | 327 | |
dcterms.references | [1] A. P. Polychronakos, J. Phys. A: Math. Gen. 39 (2006) 12793–12845. [2] F. D. M. Haldane, Phys. Rev. Lett. 60 (1988) 635–638. [3] B. S. Shastry, Phys. Rev. Lett. 60 (1988) 639–642. [4] A. P. Polychronakos, Phys. Rev. Lett. 70 (1993) 2329–2331. [5] H. Frahm, J. Phys. A: Math. Gen. 26 (1993) L473–L479. [6] H. Frahm, V. I. Inozemtsev, J. Phys. A: Math. Gen. 27 (1994) L801–L807. [7] T. Yamamoto, O. Tsuchiya, J. Phys. A: Math. Gen. 29 (1996) 3977–3984. [8] A. Enciso, F. Finkel, A. Gonzalez-López, M. A. Rodr íguez, Nucl. Phys. B 707 (2005) 553– 76. [9] J. C. Barba, F. Finkel, A. Gonzalez-López, M. A. Rodríguez, Phys. Rev. B 77 (2008) 214422(10). [10] B. Basu-Mallick, F. Finkel, A. Gonzalez-López, Nucl. Phys. B 812 (2009) 402–423. [11] B. Basu-Mallick, F. Finkel, A. Gonzalez-López, Nucl. Phys. B 843 (2011) 505–553. [12] F. D. M. Haldane, Phys. Rev. Lett. 67 (1991) 937–940. [13] F. Gebhard, A. E. Ruckenstein, Phys. Rev. Lett. 68 (1992) 244–247. [14] M. Fowler, J. A. Minahan, Phys. Rev. Lett. 70 (1993) 2325–2328. [15] D. Bernard, M. Gaudin, F. D. M. Haldane, V. Pasquier, J. Phys. A: Math. Gen. 26 (1993) 5219–5236. [16] Z. N. C. Ha, F. D. M. Haldane, Phys. Rev. B 46 (1992) 9359–9368. [17] J. A. Minahan, A. P. Polychronakos, Phys. Lett. B 302 (1993) 265–270. [18] V. I. Inozemtsev, Phys. Scr. 53 (1996) 516–520. [19] J. C. Barba, F. Finkel, A. Gonzalez-López, M. A. Rodríguez, Europhys. Lett. 83 (2008) 27005(6). [20] J. C. Barba, F. Finkel, A. Gonzalez-López, M. A. Rodríguez, Phys. Rev. E 80 (2009) 047201(4). [21] B. Basu-Mallick, H. Ujino, M. Wadati, J. Phys. Soc. Jpn. 68 (1999) 3219–3226. [22] B. Basu-Mallick, N. Bondyopadhaya, Nucl. Phys. B 757 (2006) 280–302. [23] F. D. M. Haldane, Phys. Rev. Lett. 66 (1991) 1529–1532. [24] B. Basu-Mallick, N. Bondyopadhaya, D. Sen, Nucl. Phys. B 795 (2008) 596–622. [25] J. I. Cirac, G. Sierra, Phys. Rev. B 81 (2010) 104431(4). [26] N. Beisert, C. Kristjansen, M. Staudacher, Nucl. Phys. B 664 (2003) 131–184. [27] T. Bargheer, N. Beisert, F. Loebbert, J. Phys. A: Math. Theor. 42 (2009) 285205(58). [28] M. Greiter, Phys. Rev. B 79 (2009) 064409(5). [29] K. Hikami, Nucl. Phys. B 441 (1995) 530–548. [30] B. Basu-Mallick, Nucl. Phys. B 540 (1999) 679–704. [31] N. Beisert, D. Erkal, J. Stat. Mech. 0803 (2008) P03001. [32] A. P. Polychronakos, Nucl. Phys. B 419 (1994) 553–566. [33] F. Finkel, A. Gonzalez-López, Phys. Rev. B 72 (2005) 174411(6). [34] J. C. Barba, F. Finkel, A. Gonzalez-López, M. A. Rodríguez, Nucl. Phys. B 839 (2010) 499– 525. [35] B. Basu-Mallick, N. Bondyopadhaya, K. Hikami, SIGMA 6 (2010) 091–13. [36] F. D. M. Haldane, Z. N. C. Ha, J. C. Talstra, D. Bernard, V. Pasquier, Phys. Rev. Lett. 69 (1992) 2021–2025. [37] F. Calogero, J. Math. Phys. 12 (1971) 419–436. [38] E. Corrigan, R. Sasaki, J. Phys. A: Math. Gen. 35 (2002) 7017–7061. [39] A. Enciso, F. Finkel, A. Gonzalez-López, M. A. Rodríguez, J. Nonlin. Math. Phys. 15 (2008) 155–165. [40] A. Enciso, Spin models of Calogero–Sutherland type and associated spin chains, 2009. Ph.D. Thesis, Universidad Complutense de Madrid (arXiv:0906.1167v1 [math-ph]). [41] F. Finkel, D. Gomez-Ullate, A. Gonz ález-López, M. A. Rodríguez, R. Zhdanov, Commun. Math. Phys. 221 (2001) 477–497. [42] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1995. [43] D. Bernard, V. Pasquier, D. Serban, A one-dimensioal ideal gas of spinons, or some exact results on the XXX spin chain with long range interaction, 1993. ArXiv:hep-th/9311013v1. [44] L. Lewin, Polylogarithms and associated functions, North Holland, New York, 1981. [45] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, ninth edition, 1970. [46] G. Mussardo, Statistical Field Theory: an Introduction to Exactly Solved Models in Statistical Physics, Oxford University Press, Oxford, 2010. [47] A. Erdélyi, Asymptotic Expansions, Dover, New York, 1956. [48] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982. [49] P. Banerjee, B. Basu-Mallick, Level density distribution for one-dimensional vertex models related to Haldane– Shastry like spin chains, 2011. ArXiv:1111.4376v2 [cond-mat.stat-mech]. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 207092a4-0443-4336-a037-15936f8acc25 | |
relation.isAuthorOfPublication | 7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc | |
relation.isAuthorOfPublication.latestForDiscovery | 207092a4-0443-4336-a037-15936f8acc25 |
Download
Original bundle
1 - 1 of 1