Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Thermodynamics of spin chains of Haldane-Shastry type and one-dimensional vertex models

dc.contributor.authorEnciso, Alberto
dc.contributor.authorFinkel Morgenstern, Federico
dc.contributor.authorGonzález López, Artemio
dc.date.accessioned2023-06-20T03:55:18Z
dc.date.available2023-06-20T03:55:18Z
dc.date.issued2012-11
dc.description©2012 Elsevier Inc. All rights reserved. This work was supported in part by the MICINN and the UCM–Banco Santander under grants no. FIS2011-22566 and GR35/10-A-910556.
dc.description.abstractWe study the thermodynamic properties of spin chains of Haldane-Shastry type associated with the A(N-1) root system in the presence of a uniform external magnetic field. To this end, we exactly compute the partition function of these models for an arbitrary finite number of spins. We then show that these chains are equivalent to a suitable inhomogeneous classical Ising model in a spatially dependent magnetic field, generalizing the results of Basu-Mallick et al. for the zero magnetic field case. Using the standard transfer matrix approach, we are able to compute in closed form the free energy per site in the thermodynamic limit. We perform a detailed analysis of the chains' thermodynamics in a unified way, with special emphasis on the zero field and zero temperature limits. Finally, we provide a novel interpretation of the thermodynamic quantities of spin chains of Haldane-Shastry type as weighted averages of the analogous quantities over an ensemble of classical Ising models.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN
dc.description.sponsorshipUCM–Banco Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31239
dc.identifier.doi10.1016/j.aop.2012.07.010
dc.identifier.issn0003-4916
dc.identifier.officialurlhttp://dx.doi.org/ 10.1016/j.aop.2012.07.010
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44671
dc.issue.number11
dc.journal.titleAnnals of physics
dc.language.isoeng
dc.page.final2665
dc.page.initial2627
dc.publisherElsevier Masson
dc.relation.projectIDFIS2011-22566
dc.relation.projectIDGR35/10-A-910556
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordSpin chains of haldane–shastry type
dc.subject.keywordVertex models
dc.subject.keywordTransfer matrix method
dc.subject.keywordThermodynamic limit
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleThermodynamics of spin chains of Haldane-Shastry type and one-dimensional vertex models
dc.typejournal article
dc.volume.number327
dcterms.references[1] A. P. Polychronakos, J. Phys. A: Math. Gen. 39 (2006) 12793–12845. [2] F. D. M. Haldane, Phys. Rev. Lett. 60 (1988) 635–638. [3] B. S. Shastry, Phys. Rev. Lett. 60 (1988) 639–642. [4] A. P. Polychronakos, Phys. Rev. Lett. 70 (1993) 2329–2331. [5] H. Frahm, J. Phys. A: Math. Gen. 26 (1993) L473–L479. [6] H. Frahm, V. I. Inozemtsev, J. Phys. A: Math. Gen. 27 (1994) L801–L807. [7] T. Yamamoto, O. Tsuchiya, J. Phys. A: Math. Gen. 29 (1996) 3977–3984. [8] A. Enciso, F. Finkel, A. Gonzalez-López, M. A. Rodr íguez, Nucl. Phys. B 707 (2005) 553– 76. [9] J. C. Barba, F. Finkel, A. Gonzalez-López, M. A. Rodríguez, Phys. Rev. B 77 (2008) 214422(10). [10] B. Basu-Mallick, F. Finkel, A. Gonzalez-López, Nucl. Phys. B 812 (2009) 402–423. [11] B. Basu-Mallick, F. Finkel, A. Gonzalez-López, Nucl. Phys. B 843 (2011) 505–553. [12] F. D. M. Haldane, Phys. Rev. Lett. 67 (1991) 937–940. [13] F. Gebhard, A. E. Ruckenstein, Phys. Rev. Lett. 68 (1992) 244–247. [14] M. Fowler, J. A. Minahan, Phys. Rev. Lett. 70 (1993) 2325–2328. [15] D. Bernard, M. Gaudin, F. D. M. Haldane, V. Pasquier, J. Phys. A: Math. Gen. 26 (1993) 5219–5236. [16] Z. N. C. Ha, F. D. M. Haldane, Phys. Rev. B 46 (1992) 9359–9368. [17] J. A. Minahan, A. P. Polychronakos, Phys. Lett. B 302 (1993) 265–270. [18] V. I. Inozemtsev, Phys. Scr. 53 (1996) 516–520. [19] J. C. Barba, F. Finkel, A. Gonzalez-López, M. A. Rodríguez, Europhys. Lett. 83 (2008) 27005(6). [20] J. C. Barba, F. Finkel, A. Gonzalez-López, M. A. Rodríguez, Phys. Rev. E 80 (2009) 047201(4). [21] B. Basu-Mallick, H. Ujino, M. Wadati, J. Phys. Soc. Jpn. 68 (1999) 3219–3226. [22] B. Basu-Mallick, N. Bondyopadhaya, Nucl. Phys. B 757 (2006) 280–302. [23] F. D. M. Haldane, Phys. Rev. Lett. 66 (1991) 1529–1532. [24] B. Basu-Mallick, N. Bondyopadhaya, D. Sen, Nucl. Phys. B 795 (2008) 596–622. [25] J. I. Cirac, G. Sierra, Phys. Rev. B 81 (2010) 104431(4). [26] N. Beisert, C. Kristjansen, M. Staudacher, Nucl. Phys. B 664 (2003) 131–184. [27] T. Bargheer, N. Beisert, F. Loebbert, J. Phys. A: Math. Theor. 42 (2009) 285205(58). [28] M. Greiter, Phys. Rev. B 79 (2009) 064409(5). [29] K. Hikami, Nucl. Phys. B 441 (1995) 530–548. [30] B. Basu-Mallick, Nucl. Phys. B 540 (1999) 679–704. [31] N. Beisert, D. Erkal, J. Stat. Mech. 0803 (2008) P03001. [32] A. P. Polychronakos, Nucl. Phys. B 419 (1994) 553–566. [33] F. Finkel, A. Gonzalez-López, Phys. Rev. B 72 (2005) 174411(6). [34] J. C. Barba, F. Finkel, A. Gonzalez-López, M. A. Rodríguez, Nucl. Phys. B 839 (2010) 499– 525. [35] B. Basu-Mallick, N. Bondyopadhaya, K. Hikami, SIGMA 6 (2010) 091–13. [36] F. D. M. Haldane, Z. N. C. Ha, J. C. Talstra, D. Bernard, V. Pasquier, Phys. Rev. Lett. 69 (1992) 2021–2025. [37] F. Calogero, J. Math. Phys. 12 (1971) 419–436. [38] E. Corrigan, R. Sasaki, J. Phys. A: Math. Gen. 35 (2002) 7017–7061. [39] A. Enciso, F. Finkel, A. Gonzalez-López, M. A. Rodríguez, J. Nonlin. Math. Phys. 15 (2008) 155–165. [40] A. Enciso, Spin models of Calogero–Sutherland type and associated spin chains, 2009. Ph.D. Thesis, Universidad Complutense de Madrid (arXiv:0906.1167v1 [math-ph]). [41] F. Finkel, D. Gomez-Ullate, A. Gonz ález-López, M. A. Rodríguez, R. Zhdanov, Commun. Math. Phys. 221 (2001) 477–497. [42] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1995. [43] D. Bernard, V. Pasquier, D. Serban, A one-dimensioal ideal gas of spinons, or some exact results on the XXX spin chain with long range interaction, 1993. ArXiv:hep-th/9311013v1. [44] L. Lewin, Polylogarithms and associated functions, North Holland, New York, 1981. [45] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, ninth edition, 1970. [46] G. Mussardo, Statistical Field Theory: an Introduction to Exactly Solved Models in Statistical Physics, Oxford University Press, Oxford, 2010. [47] A. Erdélyi, Asymptotic Expansions, Dover, New York, 1956. [48] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982. [49] P. Banerjee, B. Basu-Mallick, Level density distribution for one-dimensional vertex models related to Haldane– Shastry like spin chains, 2011. ArXiv:1111.4376v2 [cond-mat.stat-mech].
dspace.entity.typePublication
relation.isAuthorOfPublication207092a4-0443-4336-a037-15936f8acc25
relation.isAuthorOfPublication7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc
relation.isAuthorOfPublication.latestForDiscovery207092a4-0443-4336-a037-15936f8acc25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Finkel02preprint.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format

Collections