Delineation of groundwater potential zones by means of ensemble tree supervised classification methods in the Eastern Lake Chad basin

dc.contributor.authorGómez-Escalonilla Canales, Víctor
dc.contributor.authorVogt, Marie-Louise
dc.contributor.authorDestro, Elisa
dc.contributor.authorIsseini, Moussa
dc.contributor.authorOriggi, Giaime
dc.contributor.authorDjoret, Daira
dc.contributor.authorMartínez Santos, Pedro
dc.contributor.authorHolecz, Francesco
dc.date.accessioned2023-06-17T08:21:54Z
dc.date.available2023-06-17T08:21:54Z
dc.date.issued2021
dc.description.abstractThis paper presents a machine learning method to map groundwater potential in crystalline domains. First, a spatially-distributed set of explanatory variables for groundwater occurrence is compiled into a geographic information system. Twenty machine learning classifiers are subsequently trained on a sample of 488 boreholes and excavated wells for a region of eastern Chad. This process includes collinearity, cross-validation, feature elimination and parameter fitting routines. Random forest and extra trees classifiers outperformed other algorithms (test score > 0.80, balanced score > 0.80, AUC > 0.87). Fracture density, slope, SAR coherence (interferometric correlation), topographic wetness index, basement depth, distance to channels and slope aspect proved the most relevant explanatory variables. Three major conclusions stem from this work: (1) using a large number of supervised classification algorithms is advisable in groundwater potential studies; (2) the choice of performance metrics constrains the relevance of explanatory variables; and (3) seasonal variations from satellite images contribute to successful groundwater potential mapping.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/70207
dc.identifier.doi10.1080/10106049.2021.2007298
dc.identifier.issn1010-6049
dc.identifier.officialurlhttps://doi.org/10.1080/10106049.2021.2007298
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6765
dc.journal.titleGeocarto International
dc.language.isoeng
dc.publisherTaylor and Francis
dc.relation.projectIDRTI2018-099394-B-I00; PRE2019-090026
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu556.3(674.3)
dc.subject.keywordRemote sensing
dc.subject.keywordgroundwater exploration
dc.subject.keywordmachine learning
dc.subject.keywordLake Chad basin
dc.subject.ucmHidrología
dc.subject.unesco2508 Hidrología
dc.titleDelineation of groundwater potential zones by means of ensemble tree supervised classification methods in the Eastern Lake Chad basin
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication5046d68f-5c35-4421-8f9c-1c4c7237d801
relation.isAuthorOfPublicationfe2f5bb2-2318-4316-b695-cfeff52d3e6e
relation.isAuthorOfPublication.latestForDiscovery5046d68f-5c35-4421-8f9c-1c4c7237d801

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Delineation of groundwater potential zones by means of ensemble tree supervised classification methods in the Eastern Lake Chad basin (2).pdf
Size:
7.08 MB
Format:
Adobe Portable Document Format

Collections