Nanocrystalline tin dioxide thin films as oxidizing gas sensor

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Institute of Electron Technology, Poland
Google Scholar
Research Projects
Organizational Units
Journal Issue
Nanocrystalline tin dioxide has been employed to develop two types of sensor devices. Two electrical properties, resistivity and work function, increase with oxidizing gas adsorption. The first leads to the classical thin film resistive sensor. The other property is used to design a switching diode. Both devices show a ligh sensitivity and linearity under proper design and operating parameters. Typival figures are 100% resistance change and 50 mV voltage shift for 50 ppb of NO₂ in air. A theoretical model is proposed to explain the results.
International Seminar on Semiconductor Gas Sensors (SGS) (1.1998. Ustroń, Poland)
Unesco subjects
1.- Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements, Chang, Shih–Chia, Journal of Vacuum Science & Technology, 17, 366-369 (1980), DOI: 2.- Helmut Geistlinger, Electron theory of thin-film gas sensors, Sensors and Actuators B: Chemical, Volume 17, Issue 1, November 1993, Pages 47-60, ISSN 0925-4005, 3.- J. Melsheimer, D. Ziegler, Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide, Thin Solid Films, Volume 129, Issues 1–2, 12 July 1985, Pages 35-47, ISSN 0040-6090, 4.- S. Samson and C. G. Fondstad, Defect structure and electronic donor levles in stannic oxide crystals, J. Appl. Phys., 44, (1973)4618 5.- P. K. Cliffor, .PRroc 1sr Int. Conf. Chemical Sensors, Fukuoka, Japan, 1983 6.- Th. Volkenstein, The electron theory of catalysis on semiconductors, Pergamon Press, Oxford, 1963 7.- Juan A. de Agapito, Jose P. Santos, The interaction of low NO2 concentrations in air with degenerate nanocrystalline tin dioxide thin films, Sensors and Actuators B: Chemical, Volume 31, Issues 1–2, February 1996, Pages 93-98, ISSN 0925-4005, 8.- F.J. Gutiérrez, L. Arés, J.I. Robla, J.M. Getino, M.C. Horrillo, I. Sayago, J.A. de Agapito, Hall coefficient measurements for SnO2 doped sensors, as a function of temperature and atmosphere, Sensors and Actuators B: Chemical, Volume 15, Issues 1–3, August 1993, Pages 98-104, ISSN 0925-4005, 9.- J.G. Simmons, A. El-Badry, Theory of switching phenomena in metal/semi-insulator/n-p+ silicon devices, Solid-State Electronics, Volume 20, Issue 12, December 1977, Pages 955-961, ISSN 0038-1101, 10.- S. M. Sze, Physics of semiconductor devices, Wiley, New York, 1991 11.- G.B. Barbi, J. Santos Blanco, M. Baroffio, J. Agapito, F.J. Gutiérrez, An SnO2 based switching tunnel device for the detection of NO2 in air at the sub ppm level, Sensors and Actuators B: Chemical, Volume 18, Issue 1, 1994, Pages 93-98, ISSN 0925-4005, 12.- M.C Horrillo, P Serrini, J Santos, L Manes, Influence of the deposition conditions of SnO2 thin films by reactive sputtering on the sensitivity to urban pollutants, Sensors and Actuators B: Chemical, Volume 45, Issue 3, 15 December 1997, Pages 193-198, ISSN 0925-4005, 13.- G.B. Barbi, J. Santos Blanco, Structure of tin oxide layers and operating temperature as factors determining the sensitivity performances to NOx, Sensors and Actuators B: Chemical, Volume 16, Issue 1, 1993, Pages 372-378, ISSN 0925-4005, 14.- J. Santos, P. Serrini, B. O’Beirn, L. Manes, A thin film SnO2 gas sensor selective to ultra-low NO2 concentrations in air, Sensors and Actuators B: Chemical, Volume 43, Issues 1–3, September 1997, Pages 154-160, ISSN 0925-4005, 15.- J. R. Rice, Numerical Methods, Software and Analysis, Mc Graw Hill, New York, 1983 16.- F. S. Actorn, Numerical Methods that work, Harper and Row, New York, 1970 17.- J. A. Nelder and R. Mead , A Simplex Method for Function Minimization, The Computer Journal (1965) 7 (4): 308-313 doi:10.1093/comjnl/7.4.308