Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uniform persistence and Hopf bifurcations in R-+(n)

Loading...
Thumbnail Image

Full text at PDC

Publication date

2014

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

We consider parameterized families of flows in locally compact metrizable spaces and give a characterization of those parameterized families of flows for which uniform persistence continues. On the other hand, we study the generalized Poincare-Andronov-Hopf bifurcations of parameterized families of flows at boundary points of R-+(n) or, more generally, of an n-dimensional manifold, and show that this kind of bifurcations produce a whole family of attractors evolving from the bifurcation point and having interesting topological properties. In particular, in some cases the bifurcation transforms a system with extreme non-permanence properties into a uniformly persistent one. We study in the paper when this phenomenon. happens and provide an example constructed by combining a Holling-type interaction with a pitchfork bifurcation.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Keywords

Collections