Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On first-passage times and sojourn times in finite qbd processes and their applications in epidemics

Loading...
Thumbnail Image

Full text at PDC

Publication date

2020

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Citations
Google Scholar

Citation

Gómez-Corral, A. et al. (2020) «On first-passage times and sojourn times in finite qbd processes and their applications in epidemics», Mathematics, 8(10), pp. 1-26. doi:10.3390/MATH8101718.

Abstract

In this paper, we revisit level-dependent quasi-birth-death processes with finitely many possible values of the level and phase variables by complementing the work of Gaver, Jacobs, and Latouche (Adv. Appl. Probab. 1984), where the emphasis is upon obtaining numerical methods for evaluating stationary probabilities and moments of first-passage times to higher and lower levels. We provide a matrix-analytic scheme for numerically computing hitting probabilities, the number of upcrossings, sojourn time analysis, and the random area under the level trajectory. Our algorithmic solution is inspired from Gaussian elimination, which is applicable in all our descriptors since the underlying rate matrices have a block-structured form. Using the results obtained, numerical examples are given in the context of varicella-zoster virus infections.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections