Freely jointed molecular chain: dynamic variables, quantization, and statistical mechanics
dc.contributor.author | Fernández Álvarez-Estrada, Ramón | |
dc.date.accessioned | 2023-06-20T20:12:46Z | |
dc.date.available | 2023-06-20T20:12:46Z | |
dc.date.issued | 1992-09 | |
dc.description | © 1992 The American Physical Society. The financial support of CICYT (Proyecto No. AEN90-0034), Spain, is acknowledged. | |
dc.description.abstract | A freely rotating linear chain, formed by N (N≥2) atoms with N-1 ‘‘bonds’’ of fixed lengths, is studied in three spatial dimensions. The classical (c) theory of that constrained system is formulated in terms of the classical transverse momentum –a_j,c and angular momentum l_j,c associated to the jth ‘‘bond’’ (j=1,...,N-1). The classical Poisson brackets of the Cartesian components of -a_j,c and l_j,c are shown to close an algebra. The quantization of the chain in spherical polar coordinates is carried out. The resulting ‘‘curved-space’’ quantization yields modified angular momenta l_j. Quantum-mechanical transverse momenta (e_j) are constructed. The commutators of the Cartesian components of e_j and l_j satisfy a closed Lie algebra, formally similar to the classical one for Poisson brackets. Using e_j’s and l_j’s, the quantum theory is shown to be consistent by itself and, via the correspondence principle, with the classical one. Several properties of ej and the modified l_j are given: some sets of eigenfunctions (modified spherical harmonics, etc.) and uncertainty relations. As an example, the case of N=3 atoms in two spatial dimensions is worked out. The peculiar properties of the chain regarding distinguishability at the quantum level play an important role in justifying the absence of a ‘‘Boltzmann counting’’ factor [(N-1)!]^−1 in its classical statistical distribution. The physical limitations and the methodological virtues of the model at the classical and quantum levels, and its relationship to previous works by different authors, are discussed. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comisión Interministerial de Ciencia y Tecnología (CICYT), España | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/35000 | |
dc.identifier.doi | 10.1103/PhysRevA.46.3206 | |
dc.identifier.issn | 1050-2947 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevA.46.3206 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59849 | |
dc.issue.number | 6 | |
dc.journal.title | Physical review A | |
dc.language.iso | eng | |
dc.page.final | 3219 | |
dc.page.initial | 3206 | |
dc.publisher | American Physical Society | |
dc.relation.projectID | AEN90-0034 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 53 | |
dc.subject.keyword | Linear polyatomic-molecules | |
dc.subject.keyword | String-like model | |
dc.subject.keyword | Polymer dynamics | |
dc.subject.keyword | Constraints | |
dc.subject.keyword | Simulation | |
dc.subject.ucm | Física (Física) | |
dc.subject.unesco | 22 Física | |
dc.title | Freely jointed molecular chain: dynamic variables, quantization, and statistical mechanics | |
dc.type | journal article | |
dc.volume.number | 46 | |
dcterms.references | [1]F. W. Wiegel, Introduction to Path Integral Metho-ds in Physics and Polymer Science (World Scientific, Singapore, 1986). [2] K. F. Freed, Renormalization Group Theory of Macro molecules (Wiley, New York, 1987). [3] M. Doi and S. F. Edwards, The Theory of Polymer Dynam ics (Oxford University Press, Oxford, 1986). [4] D. A. McQuarrie, Statistical Thermodynamics (Harper and Row, New York, 1973). [5] H. A. Kramers, J. Chem. Phys. 14, 415 (1946). [6] J. J. Erpenbeck and J. G. Kirkwood, J. Chem. Phys. 29, 909 (1958);38, 023 (1963). [7] M. Fixman, Proc. Nat. Acad. Sci. (U.S.A.) 71, 3050 (1974). [8] P. W. Atkins, Molecular Quantum Mechanics, 2nd ed. (Oxford University Press, London, 1983); G. Herzberg, Molecular Spectra and Molecular Structure, Vol. II (Infrared and Raman Spectra) (Van Nostrand Reinhold, New York, 1945). [9] P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. (Clarendon, Oxford, 1958). [10]W. Greiner, Quantum Mechanics: An Introduction (Springer-Verlag, Berlin, 1989). [11]A. Galindo and P. Pascual, Quantum Mechanics (Springer-Verlag, Berlin, 1990) Vol. I; (1991),Vol. II. [12] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed. (Cambridge University Press, London, 1964); L. D. LandaU and E. M. Lifchitz, Mechanics (Pergamon, London, 1960). [13]A. F. Ranada, Dinamica Clasica (Alianza Editorial, Madrid, 1990). [14] S. W. de Leew, J. W. Perram, and H. G. Petersen, J. Stat. Phys. 61, 1203 (1990). [15]B. Podolsky, Phys. Rev. 32, 812 (1928). [16]B. S. De Witt, Rev. Mod. Phys. 29, 377 (1957). [17]L. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981). [18]W. Greiner and B. Muller, Quantum Mechanics .Symmetrics (Springer-Verlag, Berlin, 1989). [19]P. Fong, Elementary Quantum Mechanics (Addison-Wesley, Reading, MA 1962). [20] R. Mackenzie and F. Wilczek, Int. J. Mod. Phys. A 3, 2827 (1988). [21] S. Goshen (Goldstein) and H. J. Lipkin, Ann. Phys. 6, 301 (1959). [22] K. Huang, Statistical Mechanics (Wiley, New York, 1963). [23] M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755(1989). [24] M. V. Volkenshtein, Biophysics (Mir, Moscow, 1983), Chap. 3. [25] R. F. Álvarez-Estrada, Phys. Lett. A 157, 469 (1991). [26] N. Go and H. A. Scheraga, J. Chem. Phys. 51, 4751 (1969). [27] H. A. Kramers, Physica (Utrecht) 11, 1 (1944). [28] G. K. Fraenkel, J. Chem. Phys. 20, 642 (1952). [29] M. Gottlieb and R. B. Bird, J. Chem. Phys. 65, 2467 (1976). [30] E. Helfand, J. Chem. Phys. 71, 5000 (1979). [31]N. G. Van Kampen, Appl. Sci. Res. 3, 67 (1981). [32] J. M. Rallison, J. Fluid Mechs. 93, 251 (1979). [33) N. Go and H. A. Scheraga, Macromolecules 9, 535 (1976). [34] M. Fixman, J. Chem. Phys. 69, 1527 (1978); 69, 1538 (1978); M. Fixman and J. Kovac, J. Chem. Phys. 61, 4939 (1974). [35] U. M. Titulaer and J. M. Deutch, J. Chem. Phys. 63, 4505 (1975). [36] R. C. T. da Costa, Phys. Rev. A 25, 2893 (1982). [37] H. Jensen and H. Koppe, Ann. Phys. 63, 596 (1971). [38] R. C. T. da Costa, Phys. Rev. A 23, 1982 (1981). [39]R. F. Álvarez-Estrada, Phys. Lett. A 159, 118 (1991). [40] N. F. Mott and I. N. Sneddon, 8'ave Mechanics and Its Applications (Dover, New York, 1963). [41] H. H. Nielsen, Phys. Rev. 40, 445 (1932); J. E. Mayer, S. B. Brunauer, and M. Goeppert-Mayer, J. Am. Chem. Soc. 55, 37 (1933). [42] L. J. B. La Coste, Phys. Rev. 46, 718 (1934); L. S. Kassel, J. Chem. Phys. 3, 115 (1935). [43] K. S. Pitzer and W. D. Gwinn, J. Chem. Phys. 10, 428 (1942); D. Price, ibid. 9, 807 (1941); K. S. Pitzer, ibid. 14, 239 (1946); B.L. Crawford, Jr., ibid. 8, 273 (1940). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1d9ad3e6-2e32-4c9b-b666-73b1e18d1c0e | |
relation.isAuthorOfPublication.latestForDiscovery | 1d9ad3e6-2e32-4c9b-b666-73b1e18d1c0e |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- FernándezÁlvarezEstradaRamón10LIBRE.pdf
- Size:
- 676.8 KB
- Format:
- Adobe Portable Document Format