Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A note on Smoluchowski's equations with diffusion

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorRodrigo, Marianito R.
dc.date.accessioned2023-06-20T09:38:44Z
dc.date.available2023-06-20T09:38:44Z
dc.date.issued2005-09
dc.description.abstractWe consider an infinite system of reaction-diffusion equations that models aggregation of particles. Under suitable assumptions on the diffusion coefficients and aggregation rates, we show that this system can be reduced to a scalar equation, for which an explicit self-similar solution is obtained. In addition, pointwise bounds for the solutions of associated initial and initial-boundary value problems are provided.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16342
dc.identifier.doi10.1016/j.aml.2004.09.015
dc.identifier.issn0893-9659
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0893965905000170
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50102
dc.issue.number9
dc.journal.titleApplied Mathematics Letters
dc.language.isoeng
dc.page.final975
dc.page.initial969
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.projectIDBFM 2000-0605
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu517.956.4
dc.subject.keywordParticle aggregation
dc.subject.keywordreaction-diffusion
dc.subject.keywordexplicit solutions
dc.subject.keywordsupersolution
dc.subject.keywordsubsolution
dc.subject.keywordkpp-fisher equation
dc.subject.keywordcoagulation equations
dc.subject.keywordkinetics
dc.subject.keywordaggregation
dc.subject.keywordexistence
dc.subject.keyworddiscrete
dc.subject.keywordgelation
dc.subject.keywordmodel
dc.subject.keyworddynamics
dc.subject.keywordbehavior
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleA note on Smoluchowski's equations with diffusion
dc.typejournal article
dc.volume.number18
dcterms.referencesM. von Smoluchowski, Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen, Physik Z. 17 (1916) 557–585. S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15 (1943) 1–91. M. Slemrod, Coagulation–diffusion systems: derivation and existence of solutions for the diffuse interface structure equations, Physica D 46 (1990) 351–366. E.M. Hendriks, M.H. Ernst, R.M. Ziff, Coagulation equations with gelation, J. Stat. Phys. 31 (1983) 519–563. R.M. Ziff, G. Stell, Kinetics of polymer gelation, J. Chem. Phys. 73 (1980) 3492–3499. R.M. Ziff, Kinetics of polymerization, J. Stat. Phys. 23 (1980) 241–263. F. Leyvraz, Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A 16 (1983) 2861–2873. F. Leyvraz, H.R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A 14 (1981) 3389–3405. J.B. McLeod, On an infinite set of non-linear differential equations, Q. J. Math. Oxford 2 (1962) 119–128. F.P. da Costa, A finite-dimensional dynamical model for gelation in coagulation processes, J. Nonlinear Sci. 8 (1998) 619–653. P.G.J. van Dongen, M.H. Ernst, Cluster size distribution in irreversible aggregation at large times, J. Phys. A 1985 (1985) 2779–2793. F. Leyvraz, Large-time behavior of the Smoluchowski equations of coagulation, Phys. Rev. A 29 (1984) 854–858. K. Binder, Theory for the dynamics of clusters, II. Critical diffusion in binary systems for phase separation, Phys. Rev. B 15 (1977) 4425–4447. R. Lang, N.X. Xanh, Smoluchowski’s theory of coagulation in colloids holds rigorously in the Boltzmann–Grad limit, Z. Wahrsch. verw. Gebiete 54 (1980) 227–280. P.G.J. van Dongen, Spatial fluctuations in reaction-limited aggregation, J. Stat. Phys. 54 (1989) 221–271. Ph. Benilan, D. Wrzosek, On an infinite system of reaction–diffusion equations, Adv. Math. Sci. Appl. 7 (1997) 351–366. M.A. Herrero, J.J.L. Velázquez, D. Wrzosek, Sol–gel transition in a coagulation–diffusion model, Physica D 141 (2000) 221–247. H. Amann, Coagulation–fragmentation processes, Arch. Ration Mech. Anal. 151 (2000) 339–366. J.F. Collet, F. Poupaud, Existence of solutions to coagulation–fragmentation systems with diffusion, Transport Theory Statist. Phys. 25 (1996) 503–513. M. Deaconu, N. Fournier, Probabilistic approach of some discrete and continuous coagulation equations with diffusion, Stochastic Process. Appl. 101 (2002) 83–111. Ph. Laurencot, S. Mischler, Global existence for the discrete diffusive coagulation–fragmentation equations in L1, Rev. Mat. Iberoamericana 18 (2002) 731–745. D. Wrzosek, Existence of solutions for the discrete diffusive coagulation–fragmentation model with diffusion, Topol. Methods Nonlinear Anal. 9 (1997) 279–296. D. Wrzosek, Mass-conserving solutions to the discrete coagulation–fragmentation model with diffusion, Nonlinear Anal. 49 (2002) 297–314. M. Rodrigo, M. Mimura, Annihilation dynamics in the KPP–Fisher equation, European J. Appl.Math. 13 (2002) 195–204. M. Rodrigo, Evolution of bounding functions for the solution of the KPP–Fisher equation in bounded domains, Stud. Appl. Math. 110 (2003) 49–61. D.J. Aldous, Deterministic and stochastic models for coagulation (coalescence and aggregation): a review of themean-field theory for probabilists, Bernoulli 5 (1) (1999) 3–48. S.C. Davies, J.R. King, J.A.D. Wattis, Self-similar behavior in the coagulation equations, J. Eng. Math. 36 (1999) 57–88.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero18.pdf
Size:
177.44 KB
Format:
Adobe Portable Document Format

Collections