Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns

dc.contributor.authorJiménez, P. A.
dc.contributor.authorDudhia, J.
dc.contributor.authorGonzález Rouco, Jesús Fidel
dc.contributor.authorMontávez, J. P.
dc.contributor.authorGarcía Bustamante, E.
dc.contributor.authorNavarro, J.
dc.contributor.authorVilà-Guerau de Arellano, J.
dc.contributor.authorMúñoz Roldán, A.
dc.date.accessioned2023-06-19T15:00:13Z
dc.date.available2023-06-19T15:00:13Z
dc.date.issued2013-07-27
dc.description© 2013. American Geophysical Union. All Rights Reserved. This investigation was partially supported by projects CGL-2008-05093/CLI and CGL-2011-29677-C02 and was accomplished within the collaboration agreement 09/490 between CIEMAT and NCAR as well as the collaboration agreement 09/153 between CIEMAT and UCM. NCAR is sponsored by the National Science Foundation. We would like to thank the Navarra government and the ECMWF for facilitating the access to its data sets. We also would like to thank the reviewers for their constructive comments which helped to increase the value of the contents of the manuscript.
dc.description.abstractThe performance of the Weather Research and Forecasting (WRF) model to reproduce the surface wind circulations over complex terrain is examined. The atmospheric evolution is simulated using two versions of the WRF model during an over 13year period (1992 to 2005) over a complex terrain region located in the northeast of the Iberian Peninsula. A high horizontal resolution of 2km is used to provide an accurate representation of the terrain features. The multiyear evaluation focuses on the analysis of the accuracy displayed by the WRF simulations to reproduce the wind field of the six typical wind patterns (WPs) identified over the area in a previous observational work. Each pattern contains a high number of days which allows one to reach solid conclusions regarding the model performance. The accuracy of the simulations to reproduce the wind field under representative synoptic situations, or pressure patterns (PPs), of the Iberian Peninsula is also inspected in order to diagnose errors as a function of the large-scale situation. The evaluation is accomplished using daily averages in order to inspect the ability of WRF to reproduce the surface flow as a result of the interaction between the synoptic scale and the regional topography. Results indicate that model errors can originate from problems in the initial and lateral boundary conditions, misrepresentations at the synoptic scale, or the realism of the topographic features.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), España
dc.description.sponsorshipNational Center for Atmospheric Research (NCAR)
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.sponsorshipNational Science Foundation (NSF)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36116
dc.identifier.doi10.1002/jgrd.50585
dc.identifier.issn2169-897X
dc.identifier.officialurlhttp://dx.doi.org/10.1002/jgrd.50585
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/35095
dc.issue.number14
dc.journal.titleJournal of geophysical research-atmospheres
dc.language.isoeng
dc.page.final7669
dc.page.initial7651
dc.publisherAmerican Geophysical Union
dc.relation.projectIDCGL-2008-05093/CLI
dc.relation.projectIDCGL-2011-29677-C02
dc.relation.projectID09/490
dc.relation.projectID09/153
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordRegional climate model
dc.subject.keywordCluster-analysis
dc.subject.keywordQuality-assurance
dc.subject.keywordMesoscale model
dc.subject.keywordUnited-states
dc.subject.keywordVariability
dc.subject.keywordValidation
dc.subject.keywordReanalysis
dc.subject.keywordClassification
dc.subject.keywordSimulation
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleAn evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns
dc.typejournal article
dc.volume.number118
dcterms.referencesBlack, T. L. (1994), The new NMC mesoscale Eta Model: Description and forecast examples, Wea. Forecasting, 9, 265–278. Buckley, R. L. (2004), Statistical comparison of Regional Atmospheric Modelling System forecasts with observations, Meteorol. Appl., 11, 67–82. Conil, S., and A. Hall (2006), Local regimes of atmospheric variability: A case study of southern California, J. Clim., 19, 4308–4325. Cotton, W. R., et al. (2003), RAMS 2001: Current status and future directions, Meteorol. Z., 82, 5–29. Cox, R., B. L. Bauer, and T. Smith (1998), A mesoscale model intercomparison, Bull. Am. Meteorol. Soc., 79, 265–283. Darby, L. S. (2005), Cluster analysis of surface winds in Houston, Texas, and the impact of wind patterns on ozone, J. Appl. Meteorol., 44, 1788–1806. Dee, D. P., et al. (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quarter. J. R. Meteorolog. Soc., 137, 553–597. DeGaetano, A. T. (1996), Delineation of mesoscale climate zones in the northeastern United States using a novel approach to cluster analysis, J. Clim., 9, 1765–1782. Fiebrich, C. A., C. R. Morgan, and A. G. McCombs (2010), Quality assurance procedures for mesoscale meteorological data, J. Atmos. Oceanic Technol., 27, 1565–1582. García Bustamante, E., J. F. González Rouco, P. A. Jiménez, J. Navarro, and J. P. Montávez (2008), The influence of the Weibull assumption in monthly wind energy estimation, Wind Energy, 11, 483–502. García Bustamante, E., J. F. González Rouco, P. A. Jiménez, J. Navarro, and J. P. Montávez (2009), A comparison of methodologies for monthly wind energy estimations, Wind Energy, 12, 640–659. Gillette, D. A., and K. J. Hanson (1989), Spatial and temporal variability of dust production caused by wind erosion in the United States, J. Geophys. Res., 94(D2), 2197–2206. Grell, G. A., J. Dudhia, and D. R. Stauffer (1994), A description of the fifthgeneration Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398 1 STR. Hanna, S. R., and R. Yang (2001), Evaluations of mesoscale models’ simulations of near-surface winds, temperature gradients and mixing depths, J. Appl. Meteorol., 40, 1095–1104. Jiménez, P. A., and J. Dudhia (2012), Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model, J. Appl. Meteor. & Climatol., 51, 300–316. Jiménez, P. A., J. Dudhia, J. F. González Rouco, J. Navarro, J. P. Montávez, and E. García Bustamante (2012), A revised scheme for the WRF surface layer formulation, Mon. Wea. Rev., 140, 898–918. Jiménez, P. A., J. F. González Rouco, J. P. Montávez, J. Navarro, E. García Bustamante, and J. Dudhia (2013), Analysis of the long-term surface wind variability over complex terrain using a high spatial resolution WRF simulation, Clim. Dyn., 40, 1643–1656, doi:10.1007/s00382-012–1326–z. Jiménez, P. A., J. F. González Rouco, E. García Bustamante, J. Navarro, J. P. Montávez, J. Vilà-Guerau de Arellano, J. Dudhia, and A. Roldán (2010a), Surface wind regionalization over complex terrain: Evaluation and analysis of a high resolution WRF numerical simulation, J. Appl. Meteor. & Climatol., 49, 268–287. Jiménez, P. A., J. F. González Rouco, J. P. Montávez, E. García Bustamante, and J. Navarro (2009), Climatology of wind patterns in the northeast of the Iberian Peninsula, Int. J. Climatol., 29, 501–525. Jiménez, P. A., J. F. González Rouco, J. P. Montávez, J. Navarro, E. García Bustamante, and F. Valero (2008), Surface wind regionalization in complex terrain, J. Appl. Meteor. & Climatol., 47, 308–325. Jiménez, P. A., J. F. González Rouco, J. Navarro, J. P. Montávez, and E. García Bustamante (2010b), Quality assurance of surface wind observations from automated weather stations, J. Atmos. Oceanic Technol., 27, 1101–1122. Kaufmann, P., and C. D. Whiteman (1999), Cluster-analysis classification of wintertime wind patterns in the Grand Canyon region, J. Appl. Meteor., 38, 1131–1147. McVicar, T. R., et al. (2012), Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation, J. Hydrology., 416–417, 182–205. Mesinger, F., et al. (2006), North American regional reanalysis, Bull. of the Amer. Met. Soc., 87, 343–360. Mesinger, F., R. L. Wobus, and M. E. Baldwin (1996), Parameterization of form drag in the Eta Model at the National Centers for Environmental Prediction, in Preprints, 11th Conf. on Numerical Weather Prediction, Amer. Met. Soc., Norfolk, VA, 324–326. Miao, J.-F., D. Chen, K. Wyser, K. Borne, J. Lindgren, M. K. S. Strandevall, S. Thorsson, C. Achberger, and E. Almkvist (2008), Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations, Meteor. Atmos. Phys., 99, 77–103. Oreskes, N. (1998), Evaluation (not validation) of quantitative models, Environ Health Perspect., 106, 1453–1459. Oreskes, N., K. Shrader-Frechette, and K. Belitz (1994), Verification, validation, and confirmation of numerical models in the earth sciences, Science, 263, 641–646. Palutikof, J. P., P. M. Kelly, T. D. Davies, and J. A. Halliday (1987), Impacts of spatial and temporal wind speed variability on wind energy output, J. Appl. Meteor., 26, 1124–1133. Pielke, R. A. (2002), Mesoscale Meteorological Modeling, 676 pp, Academic Press, San Diego, CA. Pryor, S. C., R. J. Barthelmie, and E. Kjellström (2005), Potential climate change impact on wind energy resources in northern Europe: Analyses using a regional climate model, Clim. Dyn., 25, 815–835. Reid, S., and R. Turner (2001), Correlation of real and model wind speeds in different terrains, Wea. Forecasting, 16, 620–627. Rife, D. R., C. A. Davis, Y. Liu, and T. T. Warner (2004), Predictability of low-level winds by mesoscale meteorological models, Mon. Wea. Rev., 132, 2533–2569. Romero, R., G. Summer, C. Ramis, and A. Genovés (1999), A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area, Int. J. Climatol., 19, 765–785. Rontu, L. (2006), A study on parameterization of orography-related momentum fluxes in a synoptic-scale NWP model, Tellus, 58A, 69–81. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. Duda, X.-Y. Huang, W. Wang, and J. G. Powers (2008), A description of the advanced research WRF version 3. Technical Report TN-475+STR, NCAR. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers (2005), A description of the advanced research WRF Version 2. Technical Report TN-468+STR, NCAR. Uppala, S. M., et al. (2005), The ERA-40 re-analysis, Quarter. J. Roy. Met. Soc., 131, 2961–3012. von Storch, H. (1995), Inconsistencies at the interface of climate impact studies and global climate research, Meteorol. Z., 4 NF, 72–80. Walter, A., K. Keuler, D. Jacob, R. Knoche, A. Block, S. Kotlarski, G. Müller-Westermeier, D. Rechid, and W. Ahrens (2006), A high resolution data set of German wind velocity 1951–2001 and comparison with regional climate model results, Meteorol. Z., 15, 585–596. White, D., M. Richman, and B. Yarnal (1991), Climate regionalization and rotation of principal components, Int. J. Climatol., 11, 1–25. Whiteman, C. D. (2000), Mountain Meteorology: Fundamentals and Applications, 355 pp, Oxford University Press, New York, New York. Zagar, N., M. Zagar, J. Cedilnik, G. Gregoric, and J. Rakovec (2006), Validation of mesoscale low-level winds obtained by dynamical downscaling of ERA40 over complex terrain, Tellus, 58A, 445–455.
dspace.entity.typePublication
relation.isAuthorOfPublicationb0dda0f2-5a69-45d6-8aec-ccc99f2dc468
relation.isAuthorOfPublication.latestForDiscoveryb0dda0f2-5a69-45d6-8aec-ccc99f2dc468

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gonzalezrouco04libre.pdf
Size:
4.17 MB
Format:
Adobe Portable Document Format

Collections