Endemicity and climatic niche differentiation in three marine ciliated protists
Loading...
Official URL
Full text at PDC
Publication date
2018
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Citation
Williams RAJ, Owens HL, Clamp J, Peterson AT, Warren A, Martín‐Cereceda M. Endemicity and climatic niche differentiation in three marine ciliated protists. Limnology and Oceanography. 2018 Nov;63(6):2727-36.
Abstract
The biogeographic pattern of single-celled eukaryotes (protists), including ciliates, is poorly understood. Most marine species are believed to have a relatively high dispersal potential, such that both globally distributed and geographically isolated taxa exist. Primary occurrence data for three large, easily identified ciliate species, Parafavella gigantea, Schmidingerella serrata, and Zoothamnium pelagicum, and environmental data drawn from the National Oceanic and Atmospheric Administration’s World Ocean Atlas were used to estimate each species’ spatial and environmental distributions using Maxent v3.3.3k. The predictive power of the models was tested with a series of spatial stratification studies, which were evaluated using partial receiver operating characteristic (ROC) statistics. Differences between niches occupied by each taxon were evaluated using background similarity tests. All predictions showed significant ability to anticipate test points. The null hypotheses of niche similarity were rejected in all background similarity tests comparing the niches among the three species. This article provides the first quantitative assessment of environmental conditions associated with three species of ciliates and a first estimate of their spatial distributions in the North Atlantic, which can serve as a benchmark against which to document distributional shifts. These species follow consistent, predictable patterns related to climate and environmental biochemistry; the importance of climatic conditions as regards protist distributions is noteworthy considering the effects of global climate change.
Description
Primary occurrence data are fully and openly accessible via the Global Biodiversity Information Facility (GBIF; http://www.gbif.org/) and Ocean Biogeographic Information System (OBIS; http://www.iobis.org/). Environmental coverages were drawn from National Oceanic and Atmospheric Administration’s (NOAA) World Ocean Atlas (NOAA 1999)