Quantum speedup for active learning agents
dc.contributor.author | Paparo, Giuseppe Davide | |
dc.contributor.author | Dunjko, Vedran | |
dc.contributor.author | Makmal, Adi | |
dc.contributor.author | Martín-Delgado Alcántara, Miguel Ángel | |
dc.contributor.author | Briegel, Hans J. | |
dc.date.accessioned | 2023-06-19T15:14:22Z | |
dc.date.available | 2023-06-19T15:14:22Z | |
dc.date.issued | 2014-06-08 | |
dc.description | ©2014 American Physical Society. M. A. M.-D. acknowledges support by the Spanish MICINN Grants No. FIS2009-10061 and No. FIS2012- 33152, the CAM Research Consortium QUITEMAD S2009-ESP-1594, the European Commission PICC: FP7 2007-2013, Grant No. 249958, and the UCM-BS Grant No. GICC-910758. H. J. B. acknowledges support by the Austrian Science Fund (FWF) through the SFB FoQuS F 4012, and the Templeton World Charity Fund grant TWCF0078/AB46. G. D. P. and V. D. have contributed equally to this work. | |
dc.description.abstract | Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in reallife situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Unión Europea. FP7 | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Universidad Complutense de Madrid/Banco de Santander | |
dc.description.sponsorship | Austrian Science Fund (FWF) | |
dc.description.sponsorship | Templeton World Charity Fund | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/47323 | |
dc.identifier.doi | 10.1103/PhysRevX.4.031002 | |
dc.identifier.issn | 2160-3308 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevX.4.031002 | |
dc.identifier.relatedurl | https://journals.aps.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/35595 | |
dc.issue.number | 3 | |
dc.journal.title | Physical review X | |
dc.language.iso | eng | |
dc.publisher | American Physical Society (APS) | |
dc.relation.projectID | PICC (249958) | |
dc.relation.projectID | FIS2009-10061 | |
dc.relation.projectID | FIS2012-33152 | |
dc.relation.projectID | QUITEMAD (S2009/ESP-1594) | |
dc.relation.projectID | GICC-910758 | |
dc.relation.projectID | SFB FoQuS F 4012 | |
dc.relation.projectID | TWCF0078/AB46 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 53 | |
dc.subject.keyword | Computation | |
dc.subject.keyword | Algorithms | |
dc.subject.keyword | Network | |
dc.subject.keyword | Google. | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.title | Quantum speedup for active learning agents | |
dc.type | journal article | |
dc.volume.number | 4 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1cfed495-7729-410a-b898-8196add14ef6 | |
relation.isAuthorOfPublication.latestForDiscovery | 1cfed495-7729-410a-b898-8196add14ef6 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Martín Delgado Alcántara MÁ 05 LIBRE.pdf
- Size:
- 379.58 KB
- Format:
- Adobe Portable Document Format