Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum speedup for active learning agents

dc.contributor.authorPaparo, Giuseppe Davide
dc.contributor.authorDunjko, Vedran
dc.contributor.authorMakmal, Adi
dc.contributor.authorMartín-Delgado Alcántara, Miguel Ángel
dc.contributor.authorBriegel, Hans J.
dc.date.accessioned2023-06-19T15:14:22Z
dc.date.available2023-06-19T15:14:22Z
dc.date.issued2014-06-08
dc.description©2014 American Physical Society. M. A. M.-D. acknowledges support by the Spanish MICINN Grants No. FIS2009-10061 and No. FIS2012- 33152, the CAM Research Consortium QUITEMAD S2009-ESP-1594, the European Commission PICC: FP7 2007-2013, Grant No. 249958, and the UCM-BS Grant No. GICC-910758. H. J. B. acknowledges support by the Austrian Science Fund (FWF) through the SFB FoQuS F 4012, and the Templeton World Charity Fund grant TWCF0078/AB46. G. D. P. and V. D. have contributed equally to this work.
dc.description.abstractCan quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in reallife situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco de Santander
dc.description.sponsorshipAustrian Science Fund (FWF)
dc.description.sponsorshipTempleton World Charity Fund
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/47323
dc.identifier.doi10.1103/PhysRevX.4.031002
dc.identifier.issn2160-3308
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevX.4.031002
dc.identifier.relatedurlhttps://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/35595
dc.issue.number3
dc.journal.titlePhysical review X
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.projectIDPICC (249958)
dc.relation.projectIDFIS2009-10061
dc.relation.projectIDFIS2012-33152
dc.relation.projectIDQUITEMAD (S2009/ESP-1594)
dc.relation.projectIDGICC-910758
dc.relation.projectIDSFB FoQuS F 4012
dc.relation.projectIDTWCF0078/AB46
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordComputation
dc.subject.keywordAlgorithms
dc.subject.keywordNetwork
dc.subject.keywordGoogle.
dc.subject.ucmFísica-Modelos matemáticos
dc.titleQuantum speedup for active learning agents
dc.typejournal article
dc.volume.number4
dspace.entity.typePublication
relation.isAuthorOfPublication1cfed495-7729-410a-b898-8196add14ef6
relation.isAuthorOfPublication.latestForDiscovery1cfed495-7729-410a-b898-8196add14ef6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martín Delgado Alcántara MÁ 05 LIBRE.pdf
Size:
379.58 KB
Format:
Adobe Portable Document Format

Collections