Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spark plasma versus conventional sintering in the electrical properties of Nasicon-type materials

dc.contributor.authorPérez Estébanez, M.
dc.contributor.authorIsasi Marín, Josefa
dc.contributor.authorRivera Calzada, Alberto Carlos
dc.contributor.authorLeón Yebra, Carlos
dc.contributor.authorNygren, M.
dc.date.accessioned2023-06-18T06:49:27Z
dc.date.available2023-06-18T06:49:27Z
dc.date.issued2015-12-05
dc.description© 2016 Elsevier B.V. This research has been financed by the “Ministerio de Ciencia e Innovación” (MICINN, Spain) and by the “Fundación Neurociencias y Envejecimiento” (Spain) through grants MAT2010-18432 and 4153592, 4143942 respectively as well as by the MAT2013-40722-R project.
dc.description.abstractLi_(1+x)M_(x)Ti_(2−x)(PO_(4))_(3) powders with x = 0 and 0.3 and M = Al, Cr and Fe have been sintered by conventional sintering (CS) and Spark Plasma Sintering (SPS), and the electrical properties have been compared. The use of SPS allows preparing samples with higher density at lower temperature and shorter time than the CS, avoiding segregation of secondary phases and with reduced crystallite size. The introduction of aluminum, chromium and iron in the LiTi_(2)(PO_(4))_(3) (LTP) clearly enhances ionic conductivity even if the samples have similar densities. Despite the different level of density reached with CS and SPS, the activation energies of dc and grain boundary contributions are very similar and the differences in ionic conductivity are determined by pre-exponential factors. The samples produced by SPS showed a well-defined grain boundary meaning a more homogenous electrical contact.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN, Spain)
dc.description.sponsorshipFundación Neurociencias y Envejecimiento (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35284
dc.identifier.doi10.1016/j.jallcom.2015.08.126
dc.identifier.issn0925-8388
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.jallcom.2015.08.126
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24313
dc.journal.titleJournal of alloys and compounds
dc.language.isoeng
dc.page.final642
dc.page.initial636
dc.publisherElsevier Science SA
dc.relation.projectIDMAT2010-18432
dc.relation.projectID4153592
dc.relation.projectID4143942
dc.relation.projectIDMAT2013-40722-R
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordConducting solid-electrolyte
dc.subject.keywordLithium secondary battery
dc.subject.keywordLi-ion conductors
dc.subject.keywordGlass-ceramics
dc.subject.keywordSuperionic conductivity
dc.subject.keywordLiTi2(PO4)(3)
dc.subject.keywordLi2O-Al2O3-TiO2-P2O5
dc.subject.keywordDependence
dc.subject.keywordImpedance
dc.subject.keywordChromium.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleSpark plasma versus conventional sintering in the electrical properties of Nasicon-type materials
dc.typejournal article
dc.volume.number651
dcterms.references[1] K. Nagata, T. Nanno, J. Power Sources, 174, 2007, 832–837. [2] X. Xu, Z. Wen, X. Yang, J. Zhang, Z. Gu, Sol. State Ion., 177, 2006, 2611–2615. [3] J.S. Thokchom, B. Kumar, Sol. State Ion., 177, 2006, 727–732. [4] A. Rivera, C. León, J. Santamaría, A. Varez, M.A. París, J. Sanz, J. Non Cryst. Solids, 307, 2002, 1024–1030. [5] A. Rivera, J. Santamaría, C. León, T. Blochowicz, C. Gainaru, E.A. Rossler, App. Phys. Lett., 82, 2003, 2425–2427. [6] J. Santos-Peña, M. Cruz-Yusta, P. Soudan, S. Franger, J.J. Cuart-Pascual, Sol. State Ion., 177, 2006, 2667–2672. [7] M. Barré, M.P. Crosnier-López, F. LeBerre, E. Suard, J.L. Fourquet, J. Sol. State Chem., 188, 2007, 1011–1019. [8] P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascón, C. Masquelier, Nat. Mater., 7, 2008, 741–747. [9] P. Knauth, Sol. State Ion., 180, 2009, 911–916. [10] N. Anantharamulu, K. Koteswara Rao, G. Rambabu, B. Vijaya Kumar, V. Radha, M. Vithal, J. Mat. Sci., 46, 2011, 2821–2837. [11] B. Wang, M. Greenblatt, S. Wang, S.J. Hwu, Chem. Mater., 5, 1993, 23–26. [12] K. Arbi, M.A. Paris, J. Sanz, J. Phys. Chem. B, 110, 2006, 6454–6457. [13] J. Fu, Solid State Ion., 2738, 1997, 195–200. [14] R. Ramaraghavulu, S. Buddhudu, Ceram. Int., 37, 2011, 3651–3656. [15] K. Arbi, S. Mandal, J.M. Rojo, J. Sanz, Chem. Mater., 20, 2002, 1091–1097. [16] M.A. Paris, A. Martínez-Juárez, J.M. Rojo, J. Sanz, J. Phys. Condens. Matter, 8, 1996, 5355–5366. [17] Y. Shimonishi, T. Zhang, N. Imanishi, D. Im, D.J. Lee, A. Hirano, Y. Takeda, O. Yamamoto, N. Sammes, J. Power Sources, 196, 2013, 5128–5132. [18] P. Senguttuvan, G. Rousse, M.E. Arroyo y de Dompablo, H. Vezin, J.M. Tarascón, M.R. Palacín, J. Am. Chem. Soc., 135, 2013, 3897–3903. [19] P. Hartmann, T. Leichtweiss, M.R. Busche, M. Schneider, M. Reich, J. Sann, P. Adelhelm, J. Janek, J. Phys. Chem. C, 177, 2013, 21064–21074. [20] H. Morimoto, H. Awano, J. Terashima, Y. Shindo, S. Nakanishi, N. Ito, K. Ishikawa, S. Tobishima, J. Power Sources, 240, 2013, 636–643. [21] M. Sughama, U.V. Varadaraju, Solid State Ion., 95, 1997, 201–205. [22] S.D. Jackman, R.A. Culter, J. Power Sources, 230, 2013, 251–260. [23] M. Pérez-Estébanez, J. Isasi-Marín, D.M. Többens, A. Rivera-Calzada, C. León, Solid State Ion., 266, 2014, 1–8. [24] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, Chem. Lett. 19, 1990, 1825–1828. [25] S. Wong, P.J. Newman, A.S. Best, K.N. Nairn, D.R. MacFarlane, M. Forsyth, J. Mater. Chem., 8, 1998, 2199–2203. [26] J. Wolfenstine, D. Foster, J. Read, J.L. Allen, J. Power Sources, 182, 2008, 626–629. [27] J. Wolfenstine, J.L. Allen, J. Summer, J. Sakamoto, Solid State Ion., 180, 2009, 961–967. [28] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci., 41, 2006, 763–777. [29] W.D. Kingerg, H.K. Bowen, Introduction to Ceramics, (Chapter 10)1976, Wiley-Interscience publications; New York. [30] M. Nygren, J. Iron Steel Res., 14, 2007, 99–103. [31] G. Delaizir, V. Viallet, A. Aboulaich, R. Bouchet, L. Tortet, V. Seznec, M. Morcrette, J.M. Tarascon, P. Rozier, M. Dollé, Adv. Funct. Mat., 22, 2012, 2140–2147. [32] T. Takeuchi, H. Kageyama, K. Nakanishi, M. Tabuvhi, H. Sakaebe, T. Ohta, H. Senoh, T. Sakai, K. Tatsumi, J. Electrochem. Soc., 157, 2010, A1196–A1201. [33] Y. Kobayashi, H. Miyashiro, T. Takeuchi, H. Shigemura, N. Balakrishnan, M. Tabuchi, H. Kageyama, T. Iwahori, Solid State Ion., 152–53, 2002, 137–142. [34] R. Kali, A. Mukhopadhyay, J. Power Sources, 247, 2014, 920–931. [35] R. Kali, A. Mukhopadhyay, J. Power Sources, 247, 2014, 920–931. [36] Y. Kobayashi, T. Takeuchi, M. Tabuchi, K. Ado, H. Kageyama, J. Power Sources, 81–82, 1999, 853–858. [37] C.M. Chang, Y.I. Lee, S.H. Hong, H.M. Park, J. Am. Ceram. Soc., 88, 2005, 1803–1807. [38] Z. Wen, X. Xu, J. Li, J. Electroceram., 22, 2009, 342–345. [39] X. Xu, Z. Wen, X. Yang, L. Chen, Mat. Res. Bull., 43, 2008, 2334–2341. [40] S. Duluard, A. Paillassa, L. Puech, P. Vinatier, V. Turq, P. Rozier, P. Lenormand, P. Taberna, P. Simon, F. Ansarta, J. Eur. Ceram. Soc., 33, 2013, 1145–1153. [41] J.S. Lee, C.M. Chang, Y.I. Lee, J.H. Lee, S.H. Hong, J. Am. Ceram. Soc., 87, 2004, 305–307. [42] C. Chang, S. Hong, H. Park, Solid State Ion., 176, 2005, 2583–2587. [43] M. Pérez-Estébanez, J. Isasi-Marín, C. Díaz-Guerra, A. Rivera-Calzada, C. León, J. Santamaría, Solid State Ion., 241, 2013, 36–45. [44] M. Nygren, Z. Shen, Ceramic Science and Technology, Hot Pressing and Spark Plasma Sintering vol. 3, 2012, Willey-VHC; Germany, 189–214. [45] J. Rodríguez-Carvajal, “FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis”, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, 1990, 127, Toulouse, France. [46] F. Lange, J. Am. Ceram. Soc., 72, 1989, 3–15. [47] H. Aono, Studies on Li+ Ionic Conducting Solid Electrolyte Composed of Nasicon-type Structure, PhD thesis1994. [48] P. Scherrer, Mathematisch-Physikalische Kl., 2, 1918, 98–100. [49] M. Suárez, J.L. Menéndez, R. Torrecillas, Scr. Mater., 61, 2009, 931–934. [50] K. Arbi, R. Jiménez, T. Šalkus, A.F. Orliukas, J. Sanz, Solid State Ion., 271, 2014, 28–33. [51] K. Arbi, W. Bucheli, R. Jiménez, J. Sanz, J. Eur. Ceram. Soc., 32, 2015, 1477–1484. [52] P. Zhang, M. Matsui, Y. Takeda, O. Yamamoto, N. Imanishi, Solid State Ion., 263, 2014, 27–32. [53] P. Zhang, H. Wang, Q. Si, M. Matsui, Y. Takeda, O. Yamamoto, N. Imanishi, Solid State Ion., 272, 2015, 101–106. [54] X. Xu, Z. Wen, J. Wu, X. Yang, Solid State Ion., 178, 2007, 29–34. [55] C. Guizard, S. Surbé, G. Baldinozzi, A. Addad, Acta Mater., 56, 2008, 4658–4672.
dspace.entity.typePublication
relation.isAuthorOfPublication57702872-f198-424a-88e5-360c3ab1ae93
relation.isAuthorOfPublication65d45b0a-357f-4ec4-9f97-0ffd3e1cbdcc
relation.isAuthorOfPublication213f0e33-39f1-4f27-a134-440d5d16a07c
relation.isAuthorOfPublication.latestForDiscovery57702872-f198-424a-88e5-360c3ab1ae93

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LeonC146 POSTPRINT + EMBARGO 05_12_2018.pdf
Size:
515.74 KB
Format:
Adobe Portable Document Format

Collections