Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Laser irradiation-induced alpha to delta phase transformation in Bi_2O_3 ceramics and nanowires

dc.contributor.authorVila, Mercedes
dc.contributor.authorDíaz-Guerra Viejo, Carlos
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-20T03:40:24Z
dc.date.available2023-06-20T03:40:24Z
dc.date.issued2012-08-13
dc.description© 2012 American Institute of Physics. This work was supported by MICNN through projects MAT2009-07882 and CSD2009-0013.
dc.description.abstractThe α-Bi_2O_3 to σ- Bi_2O_3 phase transformation has been locally induced by laser irradiation in ceramic samples and single-crystal nanowires of this oxide. The threshold power densities necessary to induce this transformation, as well as the corresponding transformation kinetics and its temporal stability, have been investigated in both kinds of samples by micro-Raman spectroscopy. The appearance of the delta phase was also monitored by spatially resolved photoluminescence spectroscopy. An emission band peaked near 1.67 eV, not observed in α-Bi_2O_3, is tentatively attributed to to σ- Bi_2O_3 near band gap transitions.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICNN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25654
dc.identifier.doi10.1063/1.4747198
dc.identifier.issn0003-6951
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4747198
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44214
dc.issue.number7
dc.journal.titleApplied Physics Letters
dc.language.isoeng
dc.publisherAmer Inst Physics
dc.relation.projectIDMAT2009-07882
dc.relation.projectIDCSD2009-0013
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordThin-Films
dc.subject.keywordOptical-Properties
dc.subject.keywordOxide
dc.subject.keywordBismuthsesquioxide
dc.subject.keywordConductivity
dc.subject.keywordLuminescence
dc.subject.keywordAlpha-Bi2o3
dc.subject.keywordDisorder
dc.subject.keywordSpectra
dc.subject.ucmFísica de materiales
dc.titleLaser irradiation-induced alpha to delta phase transformation in Bi_2O_3 ceramics and nanowires
dc.typejournal article
dc.volume.number101
dcterms.references1.A. Cabot, A. Marsal, J. Arbiol, and J. R. Morante, Sens. Actuators B 99, 74 (2004). 2.A. Hameed, T. Montini, V. Gombac, and P. Fornasiero, J. Am. Chem. Soc. 130, 9658 (2008). 3.L. Leontie, M. Caraman, M. Delibas, and G. I. Rusu, Mater. Res. Bull. 36, 1629 (2001). 4.H. A. Harwig, Z. Anorg. Allg. Chem. 444, 151 (1978). 5.H. A. Harwig and J. W. Weenk, Z. Anorg. Allg. Chem. 444, 167 (1978). 6.N. M. Sammes, G. A. Tompsett, H. N€afe, and F. Aldinger, J. Eur. Ceram. Soc. 19, 1801 (1999). 7.N. V. Skorodumova, A. K. Jonsson, M. Herranen, M. StrØmme, G. A. Niklasson, B. Johansson, and S. I. Simak, Appl. Phys. Lett. 86, 241910 (2005). 8.H. T. Fan, X. M. Teng, S. S. Pan, C. Ye, G. H. Li, and L. D. Zhang, Appl. Phys. Lett. 87, 231916 (2005). 9.M. A. Camacho López, L. Escobar Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, Opt. Mater. 33, 480 (2011). 10.H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, Appl. Surf. Sci. 253, 7497 (2007). 11.P. F. Yan, K. Du, and M. L. Sui, Acta Mater. 58, 3867 (2010). 12.J. Siegel, A. Schropp, J. Solís, C. N. Afonso, and M. Wuttig, Appl. Phys. Lett. 84, 2250 (2004). 13.A. J. Birnbaum, G. Satoh, and Y. L. Yao, J. Appl. Phys. 106, 043504 (2009). 14.M. Vila, C. Díaz-Guerra, and J. Piqueras, Mater. Chem. Phys. 133, 559 (2012). 15.See supplementary material at http://dx.doi.org/10.1063/1.4747198 for XRD and HRTEM of the grown nanowires. 16.R. J. Betsch and W. B. White, Spectrochim. Acta, Part A 34, 505 (1978). 17.V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, J. Phys. Condens. Matter 9, 4967 (1997). 18.H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, J. Phys. D: Appl. Phys. 39, 1939 (2006). 19.A. Rubbens, M. Drache, P. Roussel, and J. P. Wignacourt, Mater. Res. Bull. 42, 1683 (2007). 20.M. Yashima and D. Ishimura, Chem. Phys. Lett. 378, 395 (2003). 21.C. E. Mohn, S. StØlen, S. T. Norberg, and S. Hull, Phys. Rev. B 80, 024205 (2009). 22.L. Shi, Q. Hao, C. Yu, N. Mingo, X. Kong, and Z. L. Wang, Appl. Phys. Lett. 84, 2638 (2004). 23.M. Avrami, J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941). 24.G. Mannino, C. Spinella, R. Ruggeri, A. La Magna, G. Fisicaro, E. Fazio, F. Neri, and V. Privitera, Appl. Phys. Lett. 97, 022107 (2010). 25.S. Venkataraman, H. Hermann, C. Mickel, L. Schultz, D. J. Sordelet, and J. Eckert, Phys. Rev. B 75, 104206 (2007). 26.L. E. Depero and L. Sangaletti, J. Solid State Chem. 122, 439 (1996). 27.L. Kumari, J.-H. Lin, and Y.-R. Ma, Nanotechnology 18, 295605 (2007). 28.V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, K. Polak, S. Zazubovich, and Y. Zorenko, J. Phys.: Condens. Matter 21, 415502 (2009). 29.M. Gaft, R. Reisfeld, G. Panczer, G. Boulon, T. Saraidarov, and S. Erlish, Opt. Mater. 16, 279 (2001). 30.A. Matsumoto, Y. Koyama, and I. Tanaka, Phys. Rev. B 81, 094117 (2010).
dspace.entity.typePublication
relation.isAuthorOfPublicationb1b44979-3a0d-45d7-aa26-a64b0dbfee18
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoveryb1b44979-3a0d-45d7-aa26-a64b0dbfee18

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ13libre.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format

Collections