Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nonorientable spacetime tunneling

dc.contributor.authorGonzález Díaz, Pedro F.
dc.contributor.authorGaray Elizondo, Luis Javier
dc.date.accessioned2023-06-20T19:19:49Z
dc.date.available2023-06-20T19:19:49Z
dc.date.issued1999-03-15
dc.description© 1999 The American Physical Society. For useful comments, the authors thank A. Ferrera and G.A. Mena Marugán of IMAFF. This research was supported by DGICYT under Research Projects Nos. PB94-0107 and PB97-1218.
dc.description.abstractMisner space is generalized to have the nonorientable topology of a Klein bottle, and it is shown that, in a classical spacetime with multiply connected space slices having such a topology, closed timelike curves are formed. Different regions on the Klein bottle surface can be distinguished which are separated by apparent horizons fixed at particular values of the two angular variables that enter the metric. Around the throat of this tunnel (which we denote a Klein bottlehole), the position of these horizons dictates an ordinary and exotic matter distribution such that, in addition to the known diverging lensing action of wormholes, a converging lensing action is also present at the mouths. Associated with this matter distribution, the accelerating version of this Klein bottlehole shows four distinct chronology horizons, each with its own nonchronal region. A calculation of the quantum vacuum fluctuations performed by using the regularized two-point Hadamard function shows that each chronology horizon nests a set of polarized hypersurfaces where the renormalized momentum-energy tensor diverges. This quantum instability can be prevented if we take the accelerating Klein bottlehole to be a generalization of a modified Misner space in which the period of the closed spatial direction is time dependent. In this case, the nonchronal regions and closed timelike curves cannot exceed a minimum size of the order the Planck scale. [S0556-2821(99)01906-2].
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29935
dc.identifier.issn0556-2821
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.59.064026
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.relatedurlhttp://arxiv.org/pdf/gr-qc/9901016v1.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59531
dc.issue.number6
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDPB94-0107
dc.relation.projectIDPB97-1218
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordTime-like curves
dc.subject.keywordWeak energy condition
dc.subject.keywordQuantum-field theory
dc.subject.keywordChronology protection
dc.subject.keywordTraversable wormholes
dc.subject.keywordCosmic strings
dc.subject.keywordMachines
dc.subject.keywordHorizon
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleNonorientable spacetime tunneling
dc.typejournal article
dc.volume.number59
dcterms.references[1] K.S. Thorne, in Directions in General Relativity., edited by B.L. Hu, M.P. Ryan, Jr., and C.V. Vishveshwara 8Cambridge University Press, Cambridge, England, 1993), Vol. 1. [2] M.J. Morris, K.S. Thorne, and U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988); M.S. Morris and K.S. Thorne, Am. J. Phys. 56, 395 (1988); B. Jensen and H.H. Soleng, Phys. Rev. D 45, 3528 (1992); K.S. Thorne, Black Holes and Time Warps (Norton, New York, 1994); M. Wisser, Lorentzian Wormholes (AIP, Woodbury, 19969. [3] P.F. González-Díaz, Phys. Rev. D 54, 6122 (1996). [4] J. Gott, Phys. Rev. Lett. 66, 1126 (1991). [5] J.D.E. Grant, Phys. Rev. D 47, 2388 (1993). [6] Li-Xin Li and J.R. Gott III, Phys. Rev. Lett. 80, 2980 (1998). [7] P.F. González-Díaz, Phys. Rev. D 58, 124011 (1998); in Pro ceedings of the International Seminar on Mathematical Cosmology, edited by U. Kasper, M. Rainer, and H.J. Schmidt (World Scientific, Singapore, 1998). [8] S.W. Hawking, Phys. Rev. D 46, 603 (1992). [9] J.G. Kramer, R.L. Forward, M.S. Morris, M. Visser, G. Benford, and G.A. Landis, Phys. Rev. D 51, 3117 (1995). [10] P.F. González-Díaz, Phys. Rev. D 56, 6293 (1997). [11] D.F. Torres, G.E. Romero, and L.A. Anchordoqui, Phys. Rev. D 58, 123001 (1998). [12] J.R. Gott III and Li-Xin Li, Phys. Rev. D 58, 023501 (19989. [13] B.S. Kay, M.J. Radzikowski and R.M. Wald, Commun. Math. Phys. 183, 533 (1997). [14] M.J. Cassidy, Class. Quantum Grav. 14, 3031 (1997). [15] C.R. Cramer and B.S. Kay, Class. Quantum Grav. 13, L143 (1996). [16] S.W. Hawking, Phys. Rev. D 52, 5681 (1995). [17] S.W. Hawking, Phys. Rev. D 53, 3099 (1996). [18] S.W. Hawking, Phys. Rev. D 37, 904 (1988); P.F. GonzálezDíaz, Nucl. Phys. B351, 767 (19919. [19] L.J. Garay, Phys. Rev. D 58, 124015 (19989. [20] L.J. Garay, Phys. Rev. Lett. 80, 2508 (1998). [21] S.-W. Kim and K.S. Thorne, Phys. Rev. D 43, 3929 (1991). [22] S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, England, 1973). [23] G. Klinkhammer, Phys. Rev. D 43, 2542 (1991); U. Yurtsever, Class. Quantum Grav. 7, L251 (1990); 8, 1127 (1991); M. Visser, Phys. Rev. D 39, 3182 (1989); Nucl. Phys. B328, 203 (1989); V.P. Frolov and I.D. Novikov, Phys. Rev. D 42, 1057 (1990); R.M. Wald and U. Yurtsever, ibid. 44, 403 (1991); F. Echeverria, G. Klinkhammer, and K.S. Thorne, ibid. 44, 1077 (1991). [24] J. Friedman, M.S. Morris, I.D. Novikov, F. Echeverria, G. Klinkhammer, K.S. Thorne, and U. Yurtsever, Phys. Rev. D 24, 1915 (1990). [25] W. A. Hiscock and D.A. Konkowski, Phys. Rev. D 26, 1225 (1982); K.S. Thorne, Ann. (N.Y.) Acad. Sci. 63, 182 (1991); V.P. Frolov, Phys. Rev. D 43, 3878 (1991). [26] S.V. Krasnikov, Phys. Rev. D 54, 7322 (1996). [27] M.Yu. Konstantinov, Grav. Cosmol. 3, 299 (1997). [28] S.W. Hawking, Nucl. Phys. B144, 349 (1978).
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay35.pdf
Size:
212.2 KB
Format:
Adobe Portable Document Format

Collections