Nonorientable spacetime tunneling
dc.contributor.author | González Díaz, Pedro F. | |
dc.contributor.author | Garay Elizondo, Luis Javier | |
dc.date.accessioned | 2023-06-20T19:19:49Z | |
dc.date.available | 2023-06-20T19:19:49Z | |
dc.date.issued | 1999-03-15 | |
dc.description | © 1999 The American Physical Society. For useful comments, the authors thank A. Ferrera and G.A. Mena Marugán of IMAFF. This research was supported by DGICYT under Research Projects Nos. PB94-0107 and PB97-1218. | |
dc.description.abstract | Misner space is generalized to have the nonorientable topology of a Klein bottle, and it is shown that, in a classical spacetime with multiply connected space slices having such a topology, closed timelike curves are formed. Different regions on the Klein bottle surface can be distinguished which are separated by apparent horizons fixed at particular values of the two angular variables that enter the metric. Around the throat of this tunnel (which we denote a Klein bottlehole), the position of these horizons dictates an ordinary and exotic matter distribution such that, in addition to the known diverging lensing action of wormholes, a converging lensing action is also present at the mouths. Associated with this matter distribution, the accelerating version of this Klein bottlehole shows four distinct chronology horizons, each with its own nonchronal region. A calculation of the quantum vacuum fluctuations performed by using the regularized two-point Hadamard function shows that each chronology horizon nests a set of polarized hypersurfaces where the renormalized momentum-energy tensor diverges. This quantum instability can be prevented if we take the accelerating Klein bottlehole to be a generalization of a modified Misner space in which the period of the closed spatial direction is time dependent. In this case, the nonchronal regions and closed timelike curves cannot exceed a minimum size of the order the Planck scale. [S0556-2821(99)01906-2]. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/29935 | |
dc.identifier.issn | 0556-2821 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevD.59.064026 | |
dc.identifier.relatedurl | http://journals.aps.org | |
dc.identifier.relatedurl | http://arxiv.org/pdf/gr-qc/9901016v1.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59531 | |
dc.issue.number | 6 | |
dc.journal.title | Physical review D | |
dc.language.iso | eng | |
dc.publisher | Amer Physical Soc | |
dc.relation.projectID | PB94-0107 | |
dc.relation.projectID | PB97-1218 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Time-like curves | |
dc.subject.keyword | Weak energy condition | |
dc.subject.keyword | Quantum-field theory | |
dc.subject.keyword | Chronology protection | |
dc.subject.keyword | Traversable wormholes | |
dc.subject.keyword | Cosmic strings | |
dc.subject.keyword | Machines | |
dc.subject.keyword | Horizon | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Nonorientable spacetime tunneling | |
dc.type | journal article | |
dc.volume.number | 59 | |
dcterms.references | [1] K.S. Thorne, in Directions in General Relativity., edited by B.L. Hu, M.P. Ryan, Jr., and C.V. Vishveshwara 8Cambridge University Press, Cambridge, England, 1993), Vol. 1. [2] M.J. Morris, K.S. Thorne, and U. Yurtsever, Phys. Rev. Lett. 61, 1446 (1988); M.S. Morris and K.S. Thorne, Am. J. Phys. 56, 395 (1988); B. Jensen and H.H. Soleng, Phys. Rev. D 45, 3528 (1992); K.S. Thorne, Black Holes and Time Warps (Norton, New York, 1994); M. Wisser, Lorentzian Wormholes (AIP, Woodbury, 19969. [3] P.F. González-Díaz, Phys. Rev. D 54, 6122 (1996). [4] J. Gott, Phys. Rev. Lett. 66, 1126 (1991). [5] J.D.E. Grant, Phys. Rev. D 47, 2388 (1993). [6] Li-Xin Li and J.R. Gott III, Phys. Rev. Lett. 80, 2980 (1998). [7] P.F. González-Díaz, Phys. Rev. D 58, 124011 (1998); in Pro ceedings of the International Seminar on Mathematical Cosmology, edited by U. Kasper, M. Rainer, and H.J. Schmidt (World Scientific, Singapore, 1998). [8] S.W. Hawking, Phys. Rev. D 46, 603 (1992). [9] J.G. Kramer, R.L. Forward, M.S. Morris, M. Visser, G. Benford, and G.A. Landis, Phys. Rev. D 51, 3117 (1995). [10] P.F. González-Díaz, Phys. Rev. D 56, 6293 (1997). [11] D.F. Torres, G.E. Romero, and L.A. Anchordoqui, Phys. Rev. D 58, 123001 (1998). [12] J.R. Gott III and Li-Xin Li, Phys. Rev. D 58, 023501 (19989. [13] B.S. Kay, M.J. Radzikowski and R.M. Wald, Commun. Math. Phys. 183, 533 (1997). [14] M.J. Cassidy, Class. Quantum Grav. 14, 3031 (1997). [15] C.R. Cramer and B.S. Kay, Class. Quantum Grav. 13, L143 (1996). [16] S.W. Hawking, Phys. Rev. D 52, 5681 (1995). [17] S.W. Hawking, Phys. Rev. D 53, 3099 (1996). [18] S.W. Hawking, Phys. Rev. D 37, 904 (1988); P.F. GonzálezDíaz, Nucl. Phys. B351, 767 (19919. [19] L.J. Garay, Phys. Rev. D 58, 124015 (19989. [20] L.J. Garay, Phys. Rev. Lett. 80, 2508 (1998). [21] S.-W. Kim and K.S. Thorne, Phys. Rev. D 43, 3929 (1991). [22] S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, England, 1973). [23] G. Klinkhammer, Phys. Rev. D 43, 2542 (1991); U. Yurtsever, Class. Quantum Grav. 7, L251 (1990); 8, 1127 (1991); M. Visser, Phys. Rev. D 39, 3182 (1989); Nucl. Phys. B328, 203 (1989); V.P. Frolov and I.D. Novikov, Phys. Rev. D 42, 1057 (1990); R.M. Wald and U. Yurtsever, ibid. 44, 403 (1991); F. Echeverria, G. Klinkhammer, and K.S. Thorne, ibid. 44, 1077 (1991). [24] J. Friedman, M.S. Morris, I.D. Novikov, F. Echeverria, G. Klinkhammer, K.S. Thorne, and U. Yurtsever, Phys. Rev. D 24, 1915 (1990). [25] W. A. Hiscock and D.A. Konkowski, Phys. Rev. D 26, 1225 (1982); K.S. Thorne, Ann. (N.Y.) Acad. Sci. 63, 182 (1991); V.P. Frolov, Phys. Rev. D 43, 3878 (1991). [26] S.V. Krasnikov, Phys. Rev. D 54, 7322 (1996). [27] M.Yu. Konstantinov, Grav. Cosmol. 3, 299 (1997). [28] S.W. Hawking, Nucl. Phys. B144, 349 (1978). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5638c18d-1c35-40d2-8b77-eb558c27585e | |
relation.isAuthorOfPublication.latestForDiscovery | 5638c18d-1c35-40d2-8b77-eb558c27585e |
Download
Original bundle
1 - 1 of 1