Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Asymptotic behavior of large radial solutions of a polyharmonic equation with superlinear growth

Loading...
Thumbnail Image

Full text at PDC

Publication date

2014

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

This paper concerns the blow-up behavior of large radial solutions of polyharmonic equations with power nonlinearities and positive radial weights. Specifically, we consider radially symmetric solutions of mu = c(|x|)|u| p on an annulus {x ∈ Rn | σ ≤ |x| < ρ}, with ρ ∈ (0,∞) and σ ∈ [0, ρ), that diverge to infinity as |x| → ρ. Here n,m ∈ N, p ∈ (1,∞), and c is a positive continuous function on the interval [σ, ρ]. Letting φρ(r) := QCρ/(ρ −r)q for r ∈ [σ, ρ), with q := 2m/(p−1), Q := (q(q +1)···(q +2m−1))1/(p−1), and Cρ := c(ρ)−1/(p−1), we show that, as |x| → ρ, the ratio u(x)/φρ(|x|) remains between positive constants that depend only on m and p. Extending well-known results for the second-order problem, we prove in the fourth-order case that u(x)/φρ(|x|) → 1 as |x| → ρ and obtain precise asymptotic expansions if c is sufficiently smooth at ρ. In certain higher-order cases, we find solutions for which the ratio u(x)/φρ(|x|)does not converge, but oscillates about 1 with non-vanishing amplitude.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections