Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Simulation of atmospheric microbursts using a numerical mesoscale model at high spatiotemporal resolution

dc.contributor.authorBolgiani, Pedro
dc.contributor.authorFernández González, Sergio
dc.contributor.authorValero Rodríguez, Francisco
dc.contributor.authorMerino, Andrés
dc.contributor.authorGarcía Ortega, Eduardo
dc.contributor.authorSánchez, José Luis
dc.contributor.authorMartín, María Luisa
dc.date.accessioned2023-06-16T15:17:21Z
dc.date.available2023-06-16T15:17:21Z
dc.date.issued2020-02-05
dc.description© 2020. The Authors. The authors declare no conflict of interest. The founding sponsors have no participation in the execution of the experiment, the decision to publish the results, nor in the writing of the manuscript. This work is supported by the Interdisciplinary Mathematics Institute of the Complutense University of Madrid and the following research projects: METEORISK (RTC‐2014‐ 1872‐5), PCIN‐2014‐013‐C07‐04, PCIN‐ 2016‐080 (UE ERANET Plus NEWA Project), ESP2013‐47816‐C4‐4‐P, CGL2010‐15930, CGL2016‐81828‐ REDT, FEI‐EU‐17‐16, and SAFEFLIGHT (CGL2016‐78702‐C2‐1‐R and CGL2016‐78702‐C2‐2‐R). This research is founded by the Spanish Ministry of Economy and Enterprise under the framework of the SAFEFLIGHT research project (CGL2016‐78702‐C2‐1‐R and CGL2016‐ 78702‐C2‐2‐R).
dc.description.abstractAtmospheric microbursts are low‐level meteorological events that can produce significant damage on the surface and pose a major risk to aircraft flying close to the ground. Studies and ad hoc numerical models have been developed to understand the origin and dynamics of the microburst; nevertheless, there are few researches of the phenomenon using global and mesoscale models. This is mainly due to the limitations in resolution, as microbursts normally span for less than 4 km and 20 min. In this paper, the Weather Research and Forecasting model is used at resolutions of 400 m and 3 min to test if it can properly capture the variables and dynamics of high‐reflectivity microbursts. Several microphysics and planetary boundary layer parametrizations are tested to find the best model configuration for the simulation of this kind of episodes. General conditions are evaluated by using thermodynamic diagrams. Surface and vertical wind speed, reflectivity, precipitation, and other variables for each simulated event are compared with observations, and the model's sensitivity to the variables is assessed. The dynamics and evolution of the microburst is evaluated using different plots of a chosen event. The results show that the model is able to reproduce high‐reflectivity microbursts in accordance with observations, although there is a tendency to underestimate the intensity of variables, most markedly on the wind vertical velocity. Regarding the microphysics schemes, the Morrison parametrization performs better than the WRF single‐moment 6‐class scheme. No major differences are found between the Mellor‐Yamada‐Janjic and the Mellor‐Yamada‐Nakanishi‐Niino planetary boundary layer parametrizations.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICCIN)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipInterdisciplinary Mathematics Institute of the Complutense University of Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/60219
dc.identifier.doi10.1029/2019JD031791
dc.identifier.issn2169-897X
dc.identifier.officialurlhttp://dx.doi.org/10.1029/2019JD031791
dc.identifier.relatedurlhttps://agupubs.onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6197
dc.issue.number4
dc.journal.titleJournal of geophysical research-atmospheres
dc.language.isoeng
dc.publisherAmerican Geophysical Union
dc.relation.projectIDMETEORISK (RTC‐2014‐ 1872‐5); PCIN‐2014‐013‐C07‐04; PCIN‐ 2016‐080 (UE ERANET Plus NEWA Project)
dc.relation.projectID(SAFEFLIGHT (CGL2016‐78702‐C2‐1‐; CGL2016‐78702‐C2‐2‐R); ESP2013‐47816‐C4‐4‐P; CGL2010‐15930; CGL2016‐81828‐ REDT; FEI‐EU‐17‐16)
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu52
dc.subject.keywordSevere thunderstorm
dc.subject.keywordWet microburst
dc.subject.keywordDownburst
dc.subject.keywordWeather
dc.subject.keywordConvection
dc.subject.keywordDowndrafts
dc.subject.keywordDynamics
dc.subject.keywordOutflows
dc.subject.keywordDriven
dc.subject.keywordIndex
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleSimulation of atmospheric microbursts using a numerical mesoscale model at high spatiotemporal resolution
dc.typejournal article
dc.volume.number125
dspace.entity.typePublication
relation.isAuthorOfPublication552fa01a-13cf-4384-a0fa-468914cc2b06
relation.isAuthorOfPublication.latestForDiscovery552fa01a-13cf-4384-a0fa-468914cc2b06

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
valerorodriguez60libre+CC.pdf
Size:
35.11 MB
Format:
Adobe Portable Document Format

Collections