Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A comparative study of the electrical properties of TiO2 films grown by high-pressure reactive sputtering and atomic layer deposition

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorSan Andrés Serrano, Enrique
dc.date.accessioned2023-06-20T10:44:20Z
dc.date.available2023-06-20T10:44:20Z
dc.date.issued2005-10
dc.description© 2005 IOP Publishing Ltd. The study was partially supported by the Spanish DGE-SIC under grant no. BFM 2001-2250 and TEC 2004-01237/MIC, and by the Estonian Science Foundation (grant no. 5861).
dc.description.abstractOxide-semiconductor interface quality of high-pressure reactive sputtered (HPRS) TiO2 films annealed in O-2 at temperatures ranging from 600 to 900 degrees C, and atomic layer deposited (ALD) TiO2 films grown at 225 or 275 degrees C from TiCl4 or Ti(OC2H5)(4), and annealed at 750 degrees C in O-2, has been studied on silicon substrates. Our attention has been focused on the interfacial state and disordered-induced gap state densities. From our results, HPRS films annealed at 900 degrees C in oxygen atmosphere exhibit the best characteristics, with D-it density being the lowest value measured in this work (5-6 x 10(11) cm(-2) eV(-1)), and undetectable conductance transients within our experimental limits. This result can be due to two contributions: the increase of the SiO2 film thickness and the crystallinity, since in the films annealed at 900 degrees C rutile is the dominant crystalline phase, as revealed by transmission electron microscopy and infrared spectroscopy. In the case of annealing in the range of 600-800 degrees C, anatase and rutile phases coexist. Disorder-induced gap state (DIGS) density is greater for 700 degrees C annealed HPRS films than for 750 degrees C annealed ALD TiO2 films, whereas 800 degrees C annealing offers DIGS density values similar to ALD cases. For ALD films, the studies clearly reveal the dependence of trap densities on the chemical route used.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish DGE-SIC
dc.description.sponsorshipEstonian Science Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26017
dc.identifier.doi10.1088/0268-1242/20/10/011
dc.identifier.issn0268-1242
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0268-1242/20/10/011
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51115
dc.issue.number10
dc.journal.titleSemiconductor Science and Technology
dc.language.isoeng
dc.page.final1051
dc.page.initial1044
dc.publisherIop Publishing Ltd
dc.relation.projectIDBFM 2001-2250
dc.relation.projectIDTEC 2004-01237/MIC
dc.relation.projectID5861
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordV Characteristics
dc.subject.keywordThin-Films
dc.subject.keywordInterface.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleA comparative study of the electrical properties of TiO2 films grown by high-pressure reactive sputtering and atomic layer deposition
dc.typejournal article
dc.volume.number20
dcterms.references[1] Brown, W.D. and Grannemann, W.W., 1978, Solid State Electron, 21, 837. [2] Fuyuki, T. and Matsunami, H., 1986, J. Appl. Phys., 25, 1288. [3] Rausch, N. and Burte, E.P., 1993, J. Electrochem. Soc., 140, 145. [4] Yan, J., Gilmer, D.C., Campbell, S.A., Gladfelter, W.L. and Schmid, P.G., 1996, J. Vac. Sci. Technol. B, 14, 1706. [5] Campbell, S.A., Kim, H-S., Gilmer, D.C., He, B., Ma, T. and Gladfelter, W.L., 1999, IBM J. Res.Dev., 43, 383. [6] Wilk, G.D., Wallace, R.M. and Anthony, J.M., 2001, J. Appl. Phys., 89, 5243. [7] Monticone, S., Tufeu, R., Kanaev, A.V., Scolan, E. and Sánchez, C., 2000, Appl. Surf. Sci., 162–163, 565. [8] Pascual, J., Camassel, J. and Mathieu, H. 1977, Phys. Rev. Lett., 39, 1490. [9] Stamate, M.D., 2003, Appl. Surf. Sci., 205, 353. [10] Poppe, U., Klein, N., Dáhne, U., Solner, H., Jia, C.L., Kabius, B., Urban, J., Lubig, A., Schmidt, K., Hensen, S., Orbach, S., Müller, S. and Piel, H., 1992, J. Appl. Phys., 71, 5572. [11] Ritala, M. and Leskelä, M., 2002, Handbook of Thin Film Materials vol 1: Deposition and Processing of Thin Film Materials, ed H.S. Nalwa, (San Diego: Academic), p. 104. [12] He, L., Hasegawa, H., Sawada, T. and Ohno, H., 1988, J. Appl. Phys., 63, 2120. [13] Kern, W., 1970, RCA Rev., 31, 187. [14] Aarik, J., Aidla, A., Kiisler, A-A., Uustare, T. and Sammelselg, V., 1997, Thin Solid Films, 305, 270. [15] Aarik, J., Aidla, A., Sammelselg, V., Uustare, T., Ritala, M. and Leskelä, M., 2000, Thin Solid Films, 370, 163. [16] Sammelselg, V., Rauhala, E., Arstila, K., Zakharov, A., Aarik, J., Kikas, A., Karlis, J., Tarre, A., Seppälä, A., Asari, J. and Martinson, I., 2002, Mikrochim. Acta, 139, 165. [17] Dueñas, S., Peláez, R., Castán, H., Pinacho, R., Quintanilla, L., Barbolla, J., Mártil, I. and González-Díaz, G., 1997, Appl. Phys. Lett., 71, 826. [18] Castán, H., Dueñas, S., Barbolla, J., Redondo, E., Blanco, N., Mártil, I. and González-Díaz, G., 2000, Microelectron. Reliab., 40, 845. [19] Ferrari, S., Scarel, G., Wiemer, C. and Fanciulli, M., 2002, J. Appl. Phys., 92, 7675.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,38.pdf
Size:
686.82 KB
Format:
Adobe Portable Document Format

Collections