Human NKG2D-ligands: cell biology strategies to ensure immune recognition
Loading...
Official URL
Full text at PDC
Publication date
2012
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers
Citation
Fernández-Messina, Lola, et al. «Human NKG2D-ligands: cell biology strategies to ensure immune recognition». Frontiers in Immunology, vol. 3, 2012. https://doi.org/10.3389/fimmu.2012.00299.
Abstract
Immune recognition mediated by the activating receptor NKG2D plays an important role for the elimination of stressed cells, including tumors and virus-infected cells. On the other hand, the ligands for NKG2D can also be shed into the sera of cancer patients where they weaken the immune response by downmodulating the receptor on effector cells, mainly NK and T cells. Although both families of NKG2D-ligands, major histocompatibility complex class I-related chain (MIC) A/B and UL16 binding proteins (ULBPs), are related to MHC molecules and their expression is increased after stress, many differences are observed in terms of their biochemical properties and cell trafficking. In this paper, we summarize the variety of NKG2D-ligands and propose that selection pressure has driven evolution of diversity in their trafficking and shedding, but not receptor binding affinity. However, it is also possible to identify functional properties common to individual ULBP molecules and MICA/B alleles, but not generally conserved within the MIC or ULBP families. These characteristics likely represent examples of convergent evolution for efficient immune recognition, but are also attractive targets for pathogen immune evasion strategies. Categorization of NKG2D-ligands according to their biological features, rather than their genetic family, may help to achieve a better understanding of NKG2D-ligand association with disease.
Description
Acknowledgments
Work in the authors’ laboratories are supported by grants from the Spanish Fondo de Investigación Sanitaria (PS09/00181, PI08/1701, and PI11/00298). Lola Fernández-Messina is supported by the Comunidad de Madrid (grant S2010/BMD-2326 to Mar Valés-Gómez). We would like to thank Dr. P. Roda-Navarro for critically reading the manuscript.












