Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Machine Learning Approach for Studying the Comorbidities of Complex Diagnoses

dc.contributor.authorSánchez Rico, Marina
dc.contributor.authorAlvarado Izquierdo, Jesús María
dc.date.accessioned2023-06-17T12:31:29Z
dc.date.available2023-06-17T12:31:29Z
dc.date.issued2019
dc.description.abstractThe study of diagnostic associations entails a large number of methodological problems regarding the application of machine learning algorithms, collinearity and wide variability being some of the most prominent ones. To overcome these, we propose and tested the usage of uniform manifold approximation and projection (UMAP), a very recent, popular dimensionality reduction technique. We showed its effectiveness by using it on a large Spanish clinical database of patients diagnosed with depression, to whom we applied UMAP before grouping them using a hierarchical agglomerative cluster analysis. By extensively studying its behavior and results, validating them with purely unsupervised metrics, we show that they are consistent with well-known relationships, which validates the applicability of UMAP to advance the study of comorbidities.
dc.description.departmentDepto. de Psicobiología y Metodología en Ciencias del Comportamiento
dc.description.facultyFac. de Psicología
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco de Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/62047
dc.identifier.doi10.3390/bs9120122
dc.identifier.issn2076-328X
dc.identifier.officialurlhttps://doi.org/10.3390/bs9120122
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12388
dc.issue.number12
dc.journal.titleBehavioral Sciences
dc.language.isoeng
dc.page.initial122
dc.publisherMDPI
dc.relation.projectIDPR75/18-21588
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordComorbidities
dc.subject.keyworddepression
dc.subject.keywordUMAP
dc.subject.keywordhierarchical clustering
dc.subject.ucmPsicología (Psicología)
dc.subject.unesco61 Psicología
dc.titleA Machine Learning Approach for Studying the Comorbidities of Complex Diagnoses
dc.typejournal article
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublicationb19a5f6e-1571-404c-bd21-332c59ade169
relation.isAuthorOfPublication.latestForDiscoveryb19a5f6e-1571-404c-bd21-332c59ade169

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
behavsci-09-00122-v2.pdf
Size:
393.13 KB
Format:
Adobe Portable Document Format

Collections