Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Electromagnetic effects in the pion dispersion relation at finite temperature

dc.contributor.authorGómez Nicola, Ángel
dc.contributor.authorTorres Andrés, Ricardo
dc.date.accessioned2023-06-19T13:33:00Z
dc.date.available2023-06-19T13:33:00Z
dc.date.issued2014-06-12
dc.description© 2014 American Physical Society. This work was partially supported by the Spanish Research Contract No. FPA2011-27853-C02-02 and the FPI programme (BES-2009-013672). We acknowledge the support of the EU FP7 HadronPhysics3 project.
dc.description.abstractWe investigate the charged-neutral difference in the pion self-energy at finite temperature T. Within chiral perturbation theory (ChPT) we extend a previous analysis performed in the chiral and soft pion limits. Our analysis with physical pion masses leads to additional non-negligible contributions for temperatures typical of a meson gas, including a momentum-dependent function for the self-energy. In addition, a nonzero imaginary part arises to leading order, which we define consistently in the Coulomb gauge and comes from an infrared enhanced contribution due to thermal bath photons. For distributions typical of a heavy-ion meson gas, the charged and neutral pion masses and their difference depend on temperature through slowly increasing functions. Chiral symmetry restoration turns out to be ultimately responsible for keeping the charged-neutral mass difference smooth and compatible with the observed charged and neutral pion spectra. We study also phenomenological effects related to the thermal electromagnetic damping, which gives rise to corrections for transport coefficients and distinguishes between neutral and charged mean free times. An important part of the analysis is the connection with chiral symmetry restoration through the relation of the pion mass difference with the vector-axial spectral function difference, which holds at T ¼ 0 due to a sum rule in the chiral and soft pion limits. We analyze the modifications of that sum rule including nonzero pion masses and temperature, up to OðT2Þ ∼ OðM2 πÞ. Both effects produce terms making the pion mass difference grow against chiral-restoring decreasing contributions. Finally, we analyze the corrections to the previous ChPT and sum rule results within the resonance saturation framework at finite temperature, including explicitly ρ and a1 exchanges. Our results show that the ChPT result is robust at low and intermediate temperatures, the leading resonance corrections within this framework being OðT2M2 π=M2 RÞ with MR the involved resonance masses.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Research Contract
dc.description.sponsorshipFPI programme
dc.description.sponsorshipUnión Europea. FP7
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29601
dc.identifier.doi10.1103/PhysRevD.89.116009
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.89.116009
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33993
dc.issue.number11
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFPA2011-27853-C02-02
dc.relation.projectIDBES-2009-013672
dc.relation.projectIDHadronPhysics3
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordChiral perturbation-theory
dc.subject.keywordAxial-vector mesons
dc.subject.keywordMass difference
dc.subject.keywordVirtual photons
dc.subject.keywordstrange quark
dc.subject.keywordLight quark
dc.subject.keywordField-theory
dc.subject.keywordDamping rate
dc.subject.keywordSum-rules
dc.subject.keywordOne-loop.
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleElectromagnetic effects in the pion dispersion relation at finite temperature
dc.typejournal article
dc.volume.number89
dcterms.references[1] J. I. Kapusta and C. Gale, Finite Temperature Field Theory: Principles and Applications (Cambridge University Press, Cambridge, England, 2006). [2] The Quark Matter 2012 Proceedings of the XXIII International Conference on Ultrarelativistic NucleusNucleus Collisions, edited by T. Ullrich, B. Wyslouch, and J. W. Harris [Nucl. Phys. A904–A905, 1c–1092c (2013)]. [3] Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S. D. Katz, S. Krieg, and K. K. Szabo, J. High Energy Phys., 06 (2009) 088. [4] M. Cheng, et al., Phys. Rev. D, 81, 054504 (2010). [5] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo (Wuppertal-Budapest Collaboration), J. High Energy Phys. 09 (2010) 073. [6] M. Cheng, S. Datta, A. Francis, J. van der Heide, C. Jung, O. Kaczmarek, F. Karsch, E. Laermann, et al., Eur. Phys. J. C, 71, 1564 (2011). [7] A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. T. Ding, S. Gottlieb, R. Gupta, P. Hegde, et al., Phys. Rev. D, 85, 054503 (2012). [8] A. Andronic, P. Braun-Munzinger, and J. Stachel, Phys. Lett. B, 673, 142 (2009) --- Phys. Lett. B, 678, 516(E) (2009). [9] P. Huovinen and P. Petreczky, Nucl. Phys. A, 837, 26 (2010). [10] C. Song, Phys. Rev. D, 53, 3962 (1996). [11] C. Song and V. Koch, Phys. Rev. C, 54, 3218 (1996). [12] R. Rapp and J. Wambach, Adv. Nucl. Phys., 25, 1 (2002). [13] S. Turbide, R. Rapp, and C. Gale, Phys. Rev. C, 69, 014903 (2004). [14] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.), 158, 142 (1984). [15] J. Gasser and H. Leutwyler, Nucl. Phys. B, 250, 465 (1985). [16] P. Gerber and H. Leutwyler, Nucl. Phys. B, 321, 387 (1989). [17] A. Dobado, A. Gómez Nicola, F. J. Llanes-Estrada, and J. R. Peláez, Phys. Rev. C, 66, 055201 (2002). [18] D. Fernández-Fraile and A. Gómez Nicola, Phys. Rev. D, 73, 045025 (2006). [19] D. Fernández-Fraile and A. Gómez Nicola, Eur. Phys. J. C, 62, 37 (2009). [20] D. Fernández-Fraile and A. Gómez Nicola, Phys. Rev. Lett., 102, 121601 (2009). [21] A. Dobado, F. J. Llanes-Estrada, and J. M. Torres-Rincón, Phys. Rev. D, 79, 014002 (2009). [22] A. Gómez Nicola, J. Ruiz de Elvira, and R. Torres Andrés, Phys. Rev. D, 88, 076007 (2013). [23] A. Dobado and J. R. Peláez, Phys. Rev. D, 59, 034004 (1998). [24] J. R. Peláez, Phys. Rev. D, 66, 096007 (2002). [25] A. Gómez Nicola, J. R. Peláez, and J. Ruiz de Elvira, Phys. Rev. D, 87, 016001 (2013). [26] J. Gasser and H. Leutwyler, Phys. Lett. B, 184, 83 (1987). [27] A. Schenk, Phys. Rev. D, 47, 5138 (1993). [28] J. L. Goity and H. Leutwyler, Phys. Lett. B, 228, 517 (1989). [29] D. Fernández-Fraile and A. Gómez Nicola, Phys. Rev. D, 80, 056003 (2009). [30] C. Manuel and N. Rius, Phys. Rev. D, 59, 054002 (1999). [31] J. I. Kapusta and V. Visnjic, Phys. Lett. B, 147, 181 (1984). [32] M. Ladisa, G. Nardulli, and S. Stramaglia, Phys. Lett. B, 465, 241 (1999). [33] A. Gómez Nicola and R. Torres Andrés, Phys. Rev. D, 83, 076005 (2011). [34] R. Torres Andrés and A. Gómez Nicola, Prog. Part. Nucl. Phys., 67, 337 (2012). [35] R. Rapp and J. Wambach, Phys. Rev. C, 53, 3057 (1996). [36] S. Zschocke and L. P. Csernai, Eur. Phys. J. A, 39, 349 (2009). [37] K. Adcox, et al. (PHENIX Collaboration), Phys. Rev. Lett. , 88, 022301 (2001). [38] S. S. Adler, et al. (PHENIX Collaboration), Phys. Rev. Lett., 91, 072301 (2003). [39] B. I. Abelev, et al. (STAR Collaboration), Phys. Rev. C, 80, 044905 (2009). [40] G. Conesa Balbastre, J. Phys. G, 38, 124117 (2011). [41] Y. Kharlov (ALICE Collaboration), Nucl. Phys. A, 910-911, 335 (2013). [42] S. S. Adler, et al. (PHENIX Collaboration), Phys. Rev. C, 69, 034910 (2004). [43] R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, Phys. Rev. C, 68, 044902 (2003). [44] M. Kataja and P. V. Ruuskanen, Phys. Lett. B, 243, 181 (1990). [45] G. M. de Divitiis, R. Frezzotti, V. Lubicz, G. Martinelli, R. Petronzio, G. C. Rossi, F. Sanfilippo, S. Simula, and N. Tantalo (RM123 Collaboration), Phys. Rev. D, 87, 114505 (2013). [46] T. Das, G. S. Guralnik, V. S. Mathur, F. E. Low, and J. E. Young, Phys. Rev. Lett., 18, 759 (1967). [47] M. Dey, V. L. Eletsky, and B. L. Ioffe, Phys. Lett. B, 252, 620 (1990). [48] J. F. Donoghue and A. F. Perez, Phys. Rev. D, 55, 7075 (1997). [49] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys. B, 321, 311 (1989). [50] R. Urech, Nucl. Phys. B, 433, 234 (1995). [51] U. G. Meissner, G. Muller, and S. Steininger, Phys. Lett. B, 406, 154 (1997) --- 407454(E) (1997). [52] M. Knecht and R. Urech, Nucl. Phys. B, 519, 329 (1998). [53] M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, England, 1996). [54] U. Kraemmer, A. K. Rebhan, and H. Schulz, Ann. Phys (N.Y.), 238, 286 (1995). [55] A. Gómez Nicola and R. Torres Andrés, J. Phys. G ,39, 015004 (2012). [56] S.-Y. Wang, Phys. Rev. D, 70, 065011 (2004). [57] E. Mottola and Z. Szep, Phys. Rev. D, 81, 025014 (2010). [58] A. Rebhan, Lect. Notes Phys., 583, 161 (2002). [59] P. V. Landshoff and A. Rebhan, Nucl. Phys. B, 383, 607 (1992) --- Nucl. Phys. B, 406, 517(E) (1993). [60] U. Kraemmer and A. Rebhan, Rep. Prog. Phys., 67, 351 (2004). [61] E. Braaten and R. D. Pisarski, Nucl. Phys. B, 337, 569 (1990) --- Phys. Rev. D, 46, 1829 (1992). [62] M. H. Thoma and C. T. Traxler, Phys. Lett. B, 378, 233 (1996). [63] A. Abada and K. Bouakaz, J. High Energy Phys., 01 (2006) 161. [64] J. I. Kapusta and E. V. Shuryak, Phys. Rev. D, 49, 4694 (1994). [65] P. M. Hohler and R. Rapp, Nucl. Phys. A, 892, 58 (2012). [66] N. P. M. Holt, P. M. Hohler, and R. Rapp, Phys. Rev. D, 87, 076010 (2013). [67] S. Weinberg, Phys. Rev. Lett., 18, 507 (1967). [68] G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael, Phys. Lett. B, 223, 425 (1989). [69] R. D. Pisarski and M. Tytgat, Phys. Rev. D, 54, R2989 (1996). [70] R. Rapp and C. Gale, Phys. Rev. C, 60, 024903 (1999). [71] P. Pascual and E. de Rafael, Z. Phys. C, 12, 127 (1982) --- S. Narison, Z. Phys. C, 14, 263 (1982). [72] P. Masjuan and S. Peris, J. High Energy Phys., 05 (2007) 040. [73] G. ’t Hooft, Nucl. Phys. B, 72, 461 (1974) --- E. Witten, Nucl. Phys. B, 160, 57 (1979). [74] R. Baur and R. Urech, Phys. Rev. D, 53, 6552 (1996). [75] S. Mallik and S. Sarkar, Eur. Phys. J. C, 25, 445 (2002). [76] S. Leupold, Eur. Phys. J. A, 18, 219 (2003). [77] Z.-H. Guo and J. A. Oller, Phys. Rev. D, 84, 034005 (2011). [78] R. Kobes, Phys. Rev. D, 42, 562 (1990); 431269 (1991). [79] A. Gómez Nicola, F. J. Llanes-Estrada, and J. R. Peláez, Phys. Lett. B, 550, 55 (2002). [80] S. Ghosh, S. Sarkar, and S. Mallik, Eur. Phys. J. C, 70, 251 (2010).
dspace.entity.typePublication
relation.isAuthorOfPublication574aa06c-6665-4e9a-b925-fa7675e8c592
relation.isAuthorOfPublication.latestForDiscovery574aa06c-6665-4e9a-b925-fa7675e8c592

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Art. 128.pdf
Size:
715.61 KB
Format:
Adobe Portable Document Format

Collections