Desarrollo y caracterización de nanoestructuras magnéticas para la Hipertermia magnética
Loading...
Official URL
Full text at PDC
Publication date
2024
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Este trabajo explora los mecanismos físicos que hay detrás de la Hipertermia magnética, una terapia prometedora para la lucha contra el cáncer que consiste en inducir la muerte celular de los tumores mediante un aumento de temperatura localizado. El método consiste en conseguir que un coloide de nanopartículas magnéticas disipe una cantidad de calor determinada al aplicar un campo magnético alterno. Este estudio se centra en la búsqueda de propiedades que optimicen la disipación del calor, como es el tamaño de las nanopartículas; Es preciso encontrar un tamaño que les permita, por un lado,
presentar superparamagnetismo cuando el campo aplicado es de baja frecuencia, por propiedades como la ausencia de magnetización remanente y coercitividad, y, por otro lado, que puedan presentar ferromagnetismo a mayores frecuencias del campo. De esta forma serán capaces de generar ciclos de histéresis cuyas áreas serán proporcionales a la energía térmica disipada.
This work explores the physical mechanisms behind magnetic Hyperthermia, a promising therapy in the fight against cancer, which involves inducing cell death in tumors by heating them up locally. The method consists of ensuring that a colloid of magnetic nanoparticles dissipates a certain amount of heat when an altern magnetic field is applied. This study focuses on the properties that optimize heat dissipation, such as the size of the nanoparticle; It is necessary to find a size that would allow them , on one hand, to exhibit superparamagnetism when the applied field is of low frequency, due to properties such as the absence of remanent magnetization and coercivity, and, on the other hand, to be able to exhibit ferromagnetism at higher frequencies of the field. This way, they will be able to generate hysteresis cycles whose areas will be proportional to the dissipated thermal energy.
This work explores the physical mechanisms behind magnetic Hyperthermia, a promising therapy in the fight against cancer, which involves inducing cell death in tumors by heating them up locally. The method consists of ensuring that a colloid of magnetic nanoparticles dissipates a certain amount of heat when an altern magnetic field is applied. This study focuses on the properties that optimize heat dissipation, such as the size of the nanoparticle; It is necessary to find a size that would allow them , on one hand, to exhibit superparamagnetism when the applied field is of low frequency, due to properties such as the absence of remanent magnetization and coercivity, and, on the other hand, to be able to exhibit ferromagnetism at higher frequencies of the field. This way, they will be able to generate hysteresis cycles whose areas will be proportional to the dissipated thermal energy.













