Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Is it possible to overheat ice? The activated melting of TIP4P/Ice at solid–vapour coexistence

dc.contributor.authorBaran, Lukasz
dc.contributor.authorLlombart, Pablo
dc.contributor.authorNoya, Eva G.
dc.contributor.authorGonzález Mac-Dowell, Luis
dc.date.accessioned2024-10-16T11:23:56Z
dc.date.available2024-10-16T11:23:56Z
dc.date.issued2024
dc.descriptionArticle published online, volume yet unassigned.
dc.description.abstractA widely accepted phenomenological rule states that solids with free surfaces cannot be overheated. In this work we discuss this statement critically under the light of the statistical thermodynamics of interfacial roughening transitions. Our results show that the basal face of ice as described by the TIP4P/Ice model can remain mechanically stable for more than one hundred nanoseconds when overheated by 1 K, and for several hundreds of nanoseconds at smaller overheating despite the presence of a significant quasi-liquid layer at the surface. Such time scales, which are often of little experimental significance, can become a concern for the determination of melting points by computer simulations using the direct coexistence method. In the light of this observation, we reinterpret computer simulations of ice premelting and show that current results for the TIP4P/Ice model all imply a scenario of incomplete surface melting. Using a thermodynamic integration path, we reassess our own estimates for the Laplace pressure difference between water and vapour. These calculations are used to measure the disjoining pressure of premelting liquid films and allow us to confirm a minimum of the interfacial free energy at finite premelting thickness of about one nanometer
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.statuspub
dc.identifier.doi10.1080/00268976.2024.2388800
dc.identifier.officialurlhttps://doi.org/10.1080/00268976.2024.2388800
dc.identifier.relatedurlhttps://www.tandfonline.com/doi/abs/10.1080/00268976.2024.2388800
dc.identifier.urihttps://hdl.handle.net/20.500.14352/109009
dc.journal.titleMolecular Physics
dc.language.isoeng
dc.publisherTaylor & Francis
dc.relation.projectIDPID2020-115722GB-C21/AEI/10.13039/501100011033
dc.rights.accessRightsembargoed access
dc.subject.cdu544
dc.subject.keywordSurface MeltingRoughening
dc.subject.keywordPremelting
dc.subject.keywordQuasi-liquid layer
dc.subject.keywordLayering
dc.subject.ucmCiencias
dc.subject.unesco2210 Química Física
dc.subject.unesco2213.07 Cambio de Fase
dc.titleIs it possible to overheat ice? The activated melting of TIP4P/Ice at solid–vapour coexistence
dc.typejournal article
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublication263687e7-adf6-43f0-a7b6-2a21fe8b1b93
relation.isAuthorOfPublication.latestForDiscovery263687e7-adf6-43f0-a7b6-2a21fe8b1b93

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
activated_melting.pdf
Size:
2.95 MB
Format:
Adobe Portable Document Format
Description:
Author accepted version

Collections