Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations

dc.contributor.authorCubitt, Toby S.
dc.contributor.authorLeung, Debbie
dc.contributor.authorMatthews, William
dc.contributor.authorWinter, Andreas
dc.date.accessioned2023-06-20T00:10:36Z
dc.date.available2023-06-20T00:10:36Z
dc.date.issued2011
dc.description.abstractThe theory of zero-error communication is re-examined in the broader setting of using one classical channel to simulate another exactly in the presence of various classes of nonsignalling correlations between sender and receiver i.e., shared randomness, shared entanglement and arbitrary nonsignalling correlations. When the channel being simulated is noiseless, this is zero-error coding assisted by correlations. When the resource channel is noiseless, it is the reverse problem of simulating a noisy channel exactly by a noiseless one, assisted by correlations. In both cases, separations between the power of the different classes of assisting correlations are exhibited for finite block lengths. The most striking result here is that entanglement can assist in zero-error communication. In the large block length limit, shared randomness is shown to be just as powerful as arbitrary nonsignalling correlations for exact simulation, but not for asymptotic zero-error coding. For assistance by arbitrary nonsignalling correlations, linear programming formulas for the asymptotic capacity and simulation rates are derived, the former being equal (for channels with nonzero unassisted capacity) to the feedback-assisted zero-error capacity derived by Shannon. Finally, a kind of reversibility between nonsignalling-assisted zero-error capacity and exact simulation is observed, mirroring the usual reverse Shannon theorem.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipLeverhulme early-career fellowship
dc.description.sponsorshipCRC; CFI; ORF; CIFAR; NSERC;and QuantumWorks
dc.description.sponsorshipNSERC and QuantumWorks
dc.description.sponsorshipEC, the U.K. EPSRC, the Royal Society
dc.description.sponsorshipNSF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14969
dc.identifier.doi10.1109/TIT.2011.2159047
dc.identifier.issn0018-9448
dc.identifier.officialurlhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5961832
dc.identifier.relatedurlhttp://www.ieee.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42133
dc.issue.number8
dc.journal.titleIEEE transactions on information theory
dc.language.isoeng
dc.page.final5523
dc.page.initial5509
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.projectIDEC project "QAP"[IST-2005-15848]
dc.relation.projectIDGrant PHY05-51164.
dc.rights.accessRightsrestricted access
dc.subject.cdu530.1
dc.subject.keywordChannel coding
dc.subject.keywordGraph capacities
dc.subject.keywordQuantum entanglement
dc.subject.keywordZero-error information theory
dc.subject.ucmFísica matemática
dc.titleZero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations
dc.typejournal article
dc.volume.number57
dcterms.references[1] C. E. Shannon, “The zero-error capacity of a noisy channel,” IRE Trans. Inf. Theory, vol. IT-2, no. 3, pp. 8–19, 1956. [2] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379–423, 623–656, 1948. [3] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, “Nonlocal correlations as an information-theoretic resource,” Phys. Rev. A, vol. 71, no. 2, p. 022101, 2005. [4] C. H. Bennett, P. Shor, J. Smolin, and A. V. Thapliyal, “Entanglement- assisted capacity of a quantum channel and the reverse Shannon theorem,” IEEE Trans. Inf. Theory, vol. 48, no. 10, pp. 2637–2655, Oct. 2002. [5] C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter, Quantum Reverse Shannon Theorem arXiv:0912.5537, 009. [6] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge University Press, 2004. [7] R. A. C. Medeiros, R. Alleaume, G. Cohen, and F. M. de Assis, Quantum States Characterization for the Zero-Error Capacity 2006, arXiv:quant-ph/0611042. [8] R. Duan, Super-Activation of Zero-Error Capacity of Noisy Quantum Channels arXiv:0906.2527, 2009. [9] T. S. Cubitt, J. Chen, and A. W. Harrow, Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel arXiv:0906. 2547, 2009. [10] T. S. Cubitt and G. B. Smith, Super-Duper-Activation of Quantum Zero-Error Capacities arXiv:0912.2737, 2009. [11] W. Haemers, “On some problems of Lovász concerning the Shannon capacity of a graph,” IEEE Trans. Inf. Theory, vol. IT-25, no. 2, pp. 231–232, 1979. [12] D. Leung, L. Mancinska, W. Matthews, M. Ozols, and A. Roy, Entanglement Can Increase Asymptotic Rates of Zero-Error Classical Communication Over Classical Channels arXiv:1009.1195. [13] J. E. Cohen and U. G. Rothblum, “Nonnegative ranks, decompositions, and factorizations of nonnegative matrices,” Linear Alg. and Its Applic., vol. 190, p. 1, 1993. [14] S. Kochen and E. P. Specker, “The problem of hidden variables in quantum mechanics,” J. Mathemat. and Mechan., vol. 17, pp. 59–87, 1967. [15] A. Cabello, J. M. Estebaranz, and G. G. Alcaine, “Bell-Kochen- Specker theorem: An proof with 18 vectors,” Phys. Lett. A, vol. 212, p. 183, 1986. [16] A. Peres, “Two simple proofs of theKochen-Specker theorem,” J. Phys. A: Mathemat. and Gen., vol. 24, no. 4, pp. L175–L178, 1991. [17] T. S. Cubitt, D. Leung, W. Matthews, and A.Winter, “Improving zeroerror classical communication with entanglement,” Phys. Rev. Lett., vol. 104, p. 230503, 2010, arXiv:0911.5300. [18] S. Beigi, “Entanglement-assisted zero-error capacity is upper bounded by the Lovász theta function,” arXiv:1002.2488, 2010. [19] R. Duan, S. Severini, and A. Winter, Zero-Error Communication via Quantum Channels, Non-Commutative Graphs and a Quantum Lovász
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
02.pdf
Size:
334.65 KB
Format:
Adobe Portable Document Format

Collections