Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Effect of photoelectron mean free path on the photoemission cross-section of Cu(111) and Ag(111) Shockley states

dc.contributor.authorLobo-Checa, Jorge
dc.contributor.authorMichel, Enrique G.
dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.contributor.authorKrasovskii, Eugene E.
dc.date.accessioned2023-06-20T03:47:54Z
dc.date.available2023-06-20T03:47:54Z
dc.date.issued2011-12-13
dc.description© 2011 American Physical Society. We acknowledge J. Osterwalder and T. Greber for their continuous support and also the help of the beamline staffs from both the SRC and SLS synchrotrons during experiments. This work was supported by the Spanish Ministerio de Ciencia e Innovación (Grants No. FIS2010-19609-C02-02, FIS2008- 00399, MAT2010-21156-C03-01, and MAT2010-21156-C03-02 and through the Research Program Ramon y Cajal) and the Basque Government (IT-257-07). The SRC is funded by the National Science Foundation (Award No. DMR-0084402).
dc.description.abstractThe photoemission cross-section of Shockley states of Cu(111) and Ag(111) surfaces is studied over a wide range of photon energies. The constant initial-state spectra are very different for the two surfaces and show rich structure that does not follow the generally accepted nearly free electron model for the final state. Angle resolved photoemission data are interpreted within a one-step ab initio theory, revealing a multiple Bloch wave structure of photoemission final states. The inelastic scattering parameter-optical potential-is determined, and the energy dependence of the mean free path of the outgoing electron is calculated, which turns out to be the key for the understanding of the photoemission cross-section curve. These are essential steps for future exploration of wave function perturbations in the presence of surface nanostructures.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministerio de Ciencia e Innovacion
dc.description.sponsorshipBasque Government
dc.description.sponsorshipNational Science Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28243
dc.identifier.doi10.1103/PhysRevB.84.245419
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.84.245419
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44461
dc.issue.number24
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2010-19609-C02-02
dc.relation.projectIDFIS2008-00399
dc.relation.projectIDMAT2010-21156-C03-01
dc.relation.projectIDMAT2010-21156-C03-02
dc.relation.projectIDIT-257-07
dc.relation.projectIDDMR-0084402
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordElectronic-structure
dc.subject.keywordSurface-states
dc.subject.keywordBand
dc.subject.ucmFísica de materiales
dc.titleEffect of photoelectron mean free path on the photoemission cross-section of Cu(111) and Ag(111) Shockley states
dc.typejournal article
dc.volume.number84
dcterms.references1. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, 3rd ed. (Springer, Berlin, 2003). 2. P. M. Echenique, R. Berndt, E. V. Chulkov, Th. Fauster, A. Goldmann, and U. Höfer, Surf. Sci. Rep. 52, 219 (2004). 3. J. H. Dil, F. Meier, J. Lobo-Checa, L. Patthey, G. Bihlmayer, and J. Osterwalder, Phys. Rev. Lett. 101, 66802 (2008). 4. F. Schiller, R. Keyling, E. V. Chulkov, and J. E. Ortega, Phys. Rev. Lett. 95, 126402 (2005). 5. A. Mugarza and J. E. Ortega, J. Phys. Condens. Matter 15, S3281 (2003). 6. X. Y. Wang, X. J. Shen, and R. M. Osgood Jr., Phys. Rev. B 56, 7665 (1997). 7. S. G. Louie, P. Thiry, R. Pinchaux, Y. Pétroff, D. Chandesris, and J. Lecante, Phys. Rev. Lett. 44, 549 (1980). 8. S. D. Kevan and R. H. Gaylord, Phys. Rev. Lett. 57, 2975 (1986). 9. S. D. Kevan and R. H. Gaylord, Phys. Rev. B 36, 5809 (1987). 10. T. C. Hsieh, P. John, T. Miller, and T. C. Chiang, Phys. Rev. B 35, 3728 (1987). 11. A. Samsavar, T. Miller, and T. C. Chiang, J. Phys. Condens. Matter 2, 1141 (1990). 12. S. D. Kevan, Phys. Rev. B 34, 6713 (1986). 13. See for example A. Bansil and M. Lindroos, Phys. Rev. Lett. 83, 5154 (1999); H. M. Fretwell et al., ibid. 84, 4449 (2000). 14. E. E. Krasovskii and W. Schattke, Phys. Rev. Lett. 93, 027601 (2004). 15. E. E. Krasovskii, W. Schattke, P. Jir ícek, M. Vondrácek, O. V. Krasovska, V. N. Antonov, A. P. Shpak, and I. Bartos, Phys. Rev. B 78, 165406 (2008). 16. E. E. Krasovskii, V. M. Silkin, V. U. Nazarov, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 82, 125102 (2010). 17. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985). 18. P. J. Feibelman and D. E. Eastman, Phys. Rev. B 10, 4932 (1974). 19. E. E. Krasovskii and W. Schattke, Phys. Rev. B 59, 15609 (1999). 20. E. E. Krasovskii and W. Schattke, Phys. Rev. B 56, 12874 (1997). 21. E. E. Krasovskii, F. Starrost, and W. Schattke, Phys. Rev. B 59, 10504 (1999). 22. J. A. Knapp, F. J. Himpsel, and D. E. Eastman, Phys. Rev. B 19, 4952 (1979). 23. H. J. Levinson and E. W. Plummer, Phys. Rev. B 24, 628 (1981). 24. R. A. Bartynski, E. Jensen, T. Gustafsson, and E. W. Plummer, Phys. Rev. B 32, 1921 (1985). 25. N. Barberan and J. E. Inglesfield, J. Phys. C 14, 3114 (1981). 26. P. J. Feibelman, Prog. Surf. Sci. 12, 287 (1982)
dspace.entity.typePublication
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mascaraque,A 16libre.pdf
Size:
621.56 KB
Format:
Adobe Portable Document Format

Collections