Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Polynomial topologies on Banach spaces

dc.contributor.authorGarrido, M. Isabel
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.contributor.authorLlavona, José G.
dc.date.accessioned2023-06-20T09:35:29Z
dc.date.available2023-06-20T09:35:29Z
dc.date.issued2005-06-05
dc.description.abstractOn every real Banach space X we introduce a locally convex topology tau(p), canonically associated to the weak-polynomial topology w(P). It is proved that tau(p) is the finest locally convex topology on X which is coarser than w(P). Furthermore, the convergence of sequences is considered, and sufficient conditions on X are obtained under which the convergent sequences for w(P) and for tau(P) either coincide with the weakly convergent sequences (when X has the Dunford-Pettis property) or coincide with the norm-convergent sequences (when X has nontrivial type).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15509
dc.identifier.doi10.1016/j.topol.2005.01.015
dc.identifier.issn0166-8641
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0166864105000167
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49982
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final867
dc.page.initial854
dc.publisherElsevier Science
dc.relation.projectIDBFM2000-0609
dc.relation.projectIDBFM2003-06420
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordBanach space
dc.subject.keywordPolynomial topologies
dc.subject.keywordWeakly convergent sequences
dc.subject.keywordDunford–Pettis property
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titlePolynomial topologies on Banach spaces
dc.typejournal article
dc.volume.number153
dcterms.referencesR. Alencar, R. Aron, S. Dineen, A reflexive space of holomorphic functions in infinitely many variables,Proc. Amer. Math. Soc. 90 (1984) 407–411. R. Aron, Y.S. Choi, J.G. Llavona, Estimates by polynomials, Bull. Austral. Math. Soc. 52 (1995) 475–486. R. Aron, B. Cole, T.W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991) 51–93. R. Aron, C. Hervés, M. Valdivia, Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983)189–203. R. Aron, J.B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980) 195–216. P. Biström, J.A. Jaramillo, M. Lindström, Polynomial compactness in Banach spaces, Rocky Mountain J.Math. 28 (1998) 1203–1226. R. Bonic, J. Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966) 877–898. T. Carne, B. Cole, T. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer.Math. Soc. 314 (1989) 639–659. J.M.F. Castillo, R. García, R. Gonzalo, Banach spaces in which all multilinear forms are weakly sequentially continuous, Studia Math. 136 (1999) 121–145. A.M. Davie, T.W. Gamelin, A theorem of polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989) 351–358. S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer, London, 1999. J. Farmer, W.B. Johnson, Polynomial Schur and polynomial Dunford–Pettis properties in Banach spaces,Contemp. Math. 144 (1993) 95–105. J. Ferrera, J. Gómez, J.G. Llavona, On completion of spaces of weakly continuous functions, Bull. London Math. Soc. 15 (1983) 260–264. K. Floret, Weakly Compact Sets, Lecture Notes in Math., vol. 801, Springer, Berlin, 1980. M. González, J. Gutiérrez, J.G. Llavona, Polynomial continuity on 1, Proc. Amer. Math. Soc. 125 (1997)1349–1353. R. Gonzalo, J.A. Jaramillo, Separating polynomials on Banach spaces, Extracta Math. 12 (1997) 145–164. J. Gutiérrez, J.G. Llavona, Polynomial continuous operators, Israel J. Math. 120 (1997) 179–187. P. Hájek, J.G. Llavona, P -continuity on classical Banach spaces, Proc. Amer. Math. Soc. 128 (2000) 827–830. J.A. Jaramillo, A. Prieto, Weak-polynomial convergence on a Banach space, Proc. Amer. Math. Soc. 118 (1993) 463–468. J. Lindenstraus, L. Tzafriri, Classical Banach Spaces, II, Springer, Berlin, 1979. J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud., vol. 120, North-Holland, Amsterdam,1986. R. Ryan, Dunford–Pettis properties, Bull. Acad. Polon. Sci. 27 (1979) 373–379.
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
02.pdf
Size:
131.11 KB
Format:
Adobe Portable Document Format

Collections