Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary

Loading...
Thumbnail Image

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Mathematical Sciences
Citations
Google Scholar

Citation

Abstract

We prove the existence of an appropriate function (very weak solution) u in the Lorentz space L(N') (,infinity)(Omega), N' = (N)(N - 1) satisfying Lu - Vu + g (x, u, del u) = mu in Omega an open bounded set of R(N), and u = 0 on partial derivative Omega in the sense that (u, L phi)(0) - (Vu, phi)(0) + (g(., u, del u),phi)(0) = mu(phi), for all phi is an element of C(c)(2)(Omega). The potential V <= lambda < lambda(1) is assumed to be in the weighted Lorentz space L(N,1)(Omega, delta), where delta(x) = dist (x, partial derivative Omega), mu is an element of M(1)(Omega, delta), the set of weighted Radon measures containing L(1)(Omega, delta), L is an elliptic linear self adjoint second order operator, and lambda(1) is the first eigenvalue of L with zero Dirichlet boundary conditions. If mu is an element of L(1)(Omega, delta) we only assume that for the potential V is in L(loc)(1) (Omega), V <= lambda < lambda(1). If mu is an element of M(1)(Omega, delta(alpha)), alpha is an element of [0, 1[, then we prove that the very weak solution vertical bar del u vertical bar is in the Lorentz space L(N/N-1+alpha,infinity)(Omega). We apply those results to the existence of the so called large solutions with a right hand side data in L(1)(Omega, delta). Finally, we prove some rearrangement comparison results.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections