Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

In situ TEM and analytical STEM studies of ZnO nanotubes with Sn cores and Sn nanodrops

dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorOrtega Villafuerte, Yanicet
dc.contributor.authorFernández Sánchez, Paloma
dc.contributor.authorHäußler, Dietrich
dc.contributor.authorJäger, Wolfgang
dc.date.accessioned2023-06-19T13:22:31Z
dc.date.available2023-06-19T13:22:31Z
dc.date.issued2013-10-02
dc.description© 2013 IOP Publishing Ltd The support of MICINN (Projects MAT 2009-07882 and CDS 2009-00013) is acknowledged. Y Ortega thanks the Spanish Ministry of Education for financial support through the ‘José Castillejo’ mobility grant program.
dc.description.abstractZnO nanorods with Sn core regions grown by a thermal evaporation–deposition method from a mixture of SnO_2 and ZnS powders as precursors, are used to study the behaviour of liquid metal in the nanotubes' core regions and the formation of liquid metal nanodrops at the tube ends by in situ TEM experiments. The compositions of the core materials and of the nanodrops were assessed by employing HAADF-STEM imaging and spatially resolved EDXS measurements. By applying variable thermal load through changing the electron-beam flux of the electron microscope, melting of the metallic core can be induced and the behaviour of the liquid metal of the nanorods can be monitored locally. Within the nanorod core, melting and reversible thermal expansion and contraction of Sn core material is reproducibly observed. For nanotubes with core material near-tip regions, a nanodrop emerges from the tip upon melting the core material, followed by reabsorption of the melt into the core and re-solidification upon decreasing the heat load, being reminiscent of a 'soldering nanorod'. The radius of the liquid nanodrop can reach a few tens of nanometres, containing a total volume of 10^20 up to 10^18 l of liquid Sn. In situ TEM confirms that the radius of the nanodrop can be controlled via the thermal load: it increases with increasing temperature and decreases with decreasing temperature. In addition, some phenomena related to structure modifications during extended electron-beam exposure are also described.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN (Ministerio de Ciencia e Innovación, España)
dc.description.sponsorshipSpanish Ministry of Education
dc.description.sponsorshipJosé Castillejo Mobility Grant Program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23698
dc.identifier.doi10.1088/0022-3727/46/39/395301
dc.identifier.issn0022-3727
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0022-3727/46/39/395301
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33404
dc.issue.number39
dc.journal.titleJournal of Physics D: Applied Physics
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.projectIDMAT 2009-07882
dc.relation.projectIDCDS 2009-00013
dc.rights.accessRightsrestricted access
dc.subject.cdu538.9
dc.subject.keywordNanoeires
dc.subject.keywordNanothermometer
dc.subject.ucmFísica de materiales
dc.titleIn situ TEM and analytical STEM studies of ZnO nanotubes with Sn cores and Sn nanodrops
dc.typejournal article
dc.volume.number46
dcterms.references[1] Li X 2008 J. Phys. D: Appl. Phys 41 193001. [2] Wang G X, Pank J S and Park M S 2009 J. Nanosci. Nanotechnol. 9 1144. [3] Mensah S L, Kayastha V K, Ivanov I N, Geohegan D and Yap Y K 2007 Appl. Phys. Lett. 90 113108. [4] Qiu Y and Yang S 2008 Nanotechnology 19 265606. [5] Gao Y and Bando Y 2002 Nature 415 599–600. [6] Gao Y, Bando Y and Golberg D 2002 Appl. Phys. Lett. 81 4133–5. [7] Tao X, Dong L, Zhang W, Zhang X, Cheng J, Huang H and Gan Y 2009 Carbon 47 3122–7. [8] Li Y B, Bando Y, Golberg D and Liu Z W 2003 Appl. Phys. Lett. 83 999–1001. [9] Hu J, Li Q, Zhan J, Jiao Y, Liu Z, Ringer S P, Bando Y and Golberg D 2008 Nano 2 107–12. [10] Ortega Y, Dieker Ch, Jäger W, Piqueras J and Fernández P 2010 Nanotechnology 21 225604. [11] Sutter P W and Sutter E A 2007 Nature Mater. 6 363–6. [12] Stiegler J M, Tena-Zaera R, Idigoras O, Chuvilin A and Hillenbrand R 2012 Nature Commun. 3 1131. [13] Kolmakov A, Zhang Y and Moskovits M 2003 Nano Lett. 3 1125–9.
dspace.entity.typePublication
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication2c56123a-d96e-428d-83ce-d134110a2ef3
relation.isAuthorOfPublicationdaf4b879-c4a8-4121-aaff-e6ba47195545
relation.isAuthorOfPublication.latestForDiscovery2c56123a-d96e-428d-83ce-d134110a2ef3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ320.pdf
Size:
2.17 MB
Format:
Adobe Portable Document Format

Collections