Induced Pluripotent Stem Cells: Therapeutic Applications in Monogenic and Metabolic Diseases, and Regulatory and Bioethical considerations.

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
In Tech
Google Scholar
Research Projects
Organizational Units
Journal Issue
[1] Chagastelles PC, Nardi NB, Camassola M. Biology and applications of mesenchymal stem cells. Sci Prog 2010;93:113-27. [2] Thiede MA. Stem Cell: applications and opportunities in drug discovery. Drug Discov World 2009;10:9-16. [3] Ahrlund-Richter L, De Luca M, Marshak DR, et al. Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell 2009;4:20-6. [4] Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998;282:1145-7. [5] Aflatoonian B, Moore H. Human primordial germ cells and embryonic germ cells, and their use in cell therapy. Curr Opin Biotechnol 2005;16:530-5. [6] Alison MR, Islam S. Attributes of adult stem cells. J Pathol 2009;217:144-60. [7] Sommer CA, Mostoslavsky G. Experimental approaches for the generation of induced pluripotent stem cells. Stem Cell Res Ther 2010;1:26. [8] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76. [9] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-20. [10] Okita K, Hong H, Takahashi K, et al. Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 2010;5:418-28. [11] Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009;458:771-5. [12] Woltjen K, Michael IP, Mohseni P, et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009;458:766-70. [13] Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 2007;1:39-49. [14] Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 2009;15:59-68. [15] Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development 2009;136:509-23. [16] Tateishi K, He J, Taranova O, et al. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 2008;283:31601-7. [17] Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008;321:1218-21. [18] Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell 2008;134:877-86. [19] Ebert AD, Yu J, Rose FF Jr, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009;457:277-80. [20] Caspi O, Itzhaki I, Kehat I, et al. In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev 2009;18:161-72. [21] Razvi ES, Oosta GM. Stem Cells for cellular therapy space. Drug Discov Today 2010;11:37-40. [22] Hatzimichael E, Tuthill M. Hematopoietic stem cell transplantation. Stem Cells Cloning: Advances and Applications 2010;3:105-17. [23] Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009;324:797-801. [24] Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008;451:141-6. [25] Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009;4:381-4. [26] Lin T, Ambasudhan R, Yuan X, et al. A chemical platform for improved induction of human iPSCs. Nat Methods 2009;6:805-8. [27] Lowry WE, Richter L, Yachechko R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 2008;105:2883-8. [28] Alternative sources of human pluripotent stem cells. Available at White paper: The President's Council on Bioethics. Washington, D.C; 2005. Available: http://bioeth‐ 2012 July 30). [29] Martins-Taylor K, Xu RH. Concise Review: Genomic Stability of Human Induced Pluripotent Stem Cells. Stem Cells 2012;30:22–7. [30] Rolletschek A, Wobus AM. Induced human pluripotent stem cells: promises and open questions. Biol Chem 2009;390:845-9. [31] Jang J, Yoo JE, Lee JA, et al. Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. Exp Mol Med 2012;44:202-13. [32] Wernig M, Zhao JP, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci USA 2008;105:5856-61. [33] Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007;318:1920-3. [34] Mauritz C, Schwanke K, Reppel M, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 2008;118:507-17. [35] Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 2009;104:e30-41. [36] Mason C, Manzotti E. Induced pluripotent stem cells: an emerging technology platform and the Gartner hype cycle. Regen Med 2009;4:329-31. [37] Nelson TJ, Terzic A. Induced pluripotent stem cells: reprogrammed without a trace. Regen Med 2009;4:333-55. [38] Bolton-Maggs PHB, Pasi KJ. Haemophilias A and B. Lancet 2003;361:1801-9. [39] Berntorp E, Shapiro AD. Modern haemophilia care. Lancet 2012;379:1447-56. [40] Liras A, Gaban AS, Rodriguez-Merchan EC. Cartilage restoration in haemophilia: advanced therapies. Haemophilia 2012;1-8 [41] Schaub RG. Recent advances in the development of coagulation factors and procoagulants for the treatment of hemophilia. Biochemical Pharmacology 2011;82:91-8. [42] Key NS, Negrier C. Coagulation factor concentrates: past, present, and future. Lancet 2007;370:439-48. [43] Farrugia A. Plasma fractionation issues. Biologicals 2009;37:88-93. [44] Hermans C, Brackmann HH, Schinco P, et al. The case for wider use of recombinant factor VIII concentrates. Critical Rev Oncology/Hematology 2012;83:11-20. [45] Liras A. Recombinant proteins in therapeutics: Haemophilia treatment as an example. Int Arch Med 2008;1:4.548 Pluripotent Stem Cells [46] Batlle J, Villar A, Liras A, et al. Consensus opinion for the selection and use of therapeutic products for the treatment of haemophilia in Spain. Blood Coagul Fibrinolysis 2008;19:333-40. [47] Keeling D, Tait C, Makris M. Guideline on the selection and use of therapeutic products to treat haemophilia and other hereditary bleeding disorders. A United Kingdom Haemophilia Center Doctors’ Organisation (UKHCDO) Guideline. Haemophilia 2008;14:671-84. [48] Astermark J. Inhibitor development: patient-determined risk factors. Haemophilia 2010;16:66-70. [49] Green D. Factor VIII inhibitors: a 50-year perspective. Hemophilia 2011;17:831-8. [50] Astermark J, Altisent C, Batorova A, et al. Non-genetic risk factors and the development of inhibitors in haemophilia: a comprehensive review and consensus report. Haemophilia 2010;16:747-66. [51] Franchini M, Tagliaferri A, Mengoli C, et al. Cumulative inhibitor incidence in previously untreated patients with severe hemophilia A treated with plasma-derived versus recombinant factor VIII concentrates: A critical systematic review. Critical Rev Oncology/Hematology 2012;81:82-93. [52] Andréoletti O, Litaise C, Simmons H, et al. Highly Efficient Prion Transmission by Blood Transfusion. PLoS Pathog 2012;8:e1002782. [53] Peden A, McCardle L, Head MW, et al. Variant CJD infection in the spleen of a neurologically asymptomatic UK adult patient with haemophilia. Haemophilia 2010;16:296-304. [54] Zaman SM, Hill FG, Palmer B, et al. The risk of variant Creutzfeldt-Jakob disease among UK patients with bleeding disorders, known to have received potentially contaminated plasma products. Haemophilia 2011;17:931-7. [55] Mei B, Pan C, Jiang H, et al. Rational design of a fully active, long-acting PEGylated factor VIII for hemophilia A treatment. Blood 2010;116:270-9. [56] Negrier C, Knobe K, Tiede A, et al. Enhanced pharmacokinetic properties of a glyco‐ PEGylated recombinant factor IX: a first human dose trial in patients with hemophilia B. Blood 2011;118:2695-701. [57] Dumont JA, Liu T, Low SC, et al. Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs. Blood 2012;119:3024-30. [58] Shapiro AD, Ragni MV, Valentino LA, et al. Recombinant factor IX-Fc fusion protein (rFIXFc) demonstrates safety and prolonged activity in a phase 1/2a study in hemophilia B patients. Blood 2012;119:666-72. [59] Peng A, Kosloski MP, Nakamura G, et al. PEGylation of a factor VIII-phosphatidylinositol complex: pharmacokinetics and immunogenicity in hemophilia A mice. AAPS J 2012;14:35-42. [60] Casademunt E, Martinelle K, Jernberg M, et al. The first recombinant human coagulation factor VIII of human origin: human cell line and manufacturing characteristics.Eur J Haematol 2012;89:165-76. [61] Nichols TC, Dillow AM, Franck HW, et al. Protein replacement therapy and gene transfer in canine models of haemophilia A, haemophilia B, von Willebrand disease, and factor VII deficiency. ILAR J 2009;50:144-67. [62] Nienhuis AW. Development of gene therapy for blood disorders. Blood 2009;111:4431-44. [63] Liras A. Gene therapy for haemophilia: The end of a “royal pathology” in the third millennium? Haemophilia 2001;7:441-5. [64] Liras A, Olmedillas S. Gene therapy for haemophilia…yes, but…with non-viral vectors? Haemophilia 2009;15:811-6. [65] Jeon HJ, Oh TK, Kim OH, et al. Delivery of factor VIII gene into skeletal muscle cells using lentiviral vector. Yonsei Med J 2010;51:52-7. [66] Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector mediated gene transfer in hemophilia B. N Engl J Med 2011;365:2357-65. [67] Sivalingam J, Krishnan S, Ng WH, et al. Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells. Mol Ther 2010;18:1346-56. [68] Liras A, García-Arranz M, García-Gómez I, et al. Factor IX secretion in human adipose-derived stem cells by non-viral gene transfer. Haemophilia 2012;18(Suppl 3):A65. [69] Aronovich A, Tchorsh D, Katchman H, et al. Correction of hemophilia as a proof of concept for treatment of monogenic diseases by fetal spleen transplantation. Proc Natl Acad Sci USA 2006;103:19075-80. [70] Follenzi A, Benten D, Novikoff P, et al.Transplanted endothelial cells repopulate the liver endothelium and correct the phenotype of hemophilia A mice. J Clin Invest 2008;118:935-45. [71] Follenzi A, Raut S, Merlin S, et al. Role of bone marrow transplantation for correcting hemophilia A in mice. Blood 2012;119:5532-42. [72] Xu D, Alipio Z, Fink LM, et al. Phenotypic correction of murine hemophilia A using an iPSCs cell-based therapy. Proc Natl Acad Sci USA 2009;106:808-13. [73] Yadav N, Kanjirakkuzhiyil S, Kumar S, et al. The therapeutic effect of bone marrowderived liver cells in the phenotypic correction of murine hemophilia A. Blood 2009;114:4552-61.550 Pluripotent Stem Cells [74] Alipio Z, Adcock DM, Waner M, et al. Sustained factor VIII production in hemophiliac mice 1 year after engraftment with induced pluripotent stem cell-derived factor VIII producing endothelial cells. Blood Coagul Fibrinolysis 2010;21:502-4. [74] Alipio Z, Adcock DM, Waner M, et al. Sustained factor VIII production in hemophiliac mice 1 year after engraftment with induced pluripotent stem cell-derived factor VIII producing endothelial cells. Blood Coagul Fibrinolysis 2010;21:502-4. [75] Daneman D. Type 1 diabetes. Lancet 2006;367:847-58. [76] Retnakaran R, Zinman B. Type 1 diabetes,hyperglycaemia, and the heart. Lancet 2008;371:1790-9. [77] Sayad A, Akbari MT, Pajouhi M, et al. The influence of the HLA-DRB, HLA-DQB and polymorphic positions of the HLA-DRβ1 and HLA-DQβ1 molecules on risk of Iranian type 1 diabetes mellitus patients. Int J Immunogenet 2012 (In press). [78] Steck AK, Wong R, Wagner B, et al. Effects of non-HLA gene polymorphisms on development of islet autoimmunity and type 1 diabetes in a population with high-risk HLA-DR,DQ genotypes. Diabetes 2012;61:753-8. [79] Krischer JP, Cuthbertson DD, Yu L, et al. Screening strategies for the identification of multiple antibody-positive relatives of individuals with type 1 diabetes. J Clin Endocrinol Metab 2003;88:103-8. [80] Maclaren N, Lan M, Coutant R, et al. Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA-2 and IA-2beta predict immune-mediated (Type 1) diabetes in relatives. J Autoimmun 1999;12:279-87. [81] Barker JM, Barriga KJ, Yu L, et al. Prediction of autoantibody positivity and progression to type 1 diabetes: diabetes autoimmunity study in the young (DAISY). J Clin Endocrinol Metab 2004;89:3896-902. [82] Barker JM, Yu J, Yu L, et al. Autoantibody “subspecificity” in type 1 diabetes: risk for organ-specific autoimmunity clusters in distinct groups. Diabetes Care 2005;28:850-5. [83] Kordonouri O, Hartmann R, Deiss D, et al. Natural course of autoimmune thyroiditis in type 1 diabetes: association with gender, age, diabetes duration, and puberty. Arch Dis Child 2005;90:411-4. [84] Skovbjerg H, Tarnow L, Locht H, et al. The prevalence of coeliac disease in adult Danish patients with type 1 diabetes with and without nephropathy. Diabetologia 2005;48:1416-7. [85] Norris JM, Barriga K, Hoffenberg EJ, et al. Risk of celiac disease autoimmunity and timing of gluten introduction in the diet of infants at increased risk of disease. JAMA 2005;293:2343-51. [86] Taton J, Czech A, Piątkiewicz P. Insulin as the main regulator of cellular glucose utilization-etiological aspects of insulin resistance. Pol J Endocrinol 2010;61:388-94. [87] Azpiazu I, Manchester J, Skurat AV et al. Control of glycogen synthesis is shared between glucose transport and glycogen synthase in skeletal muscle fibers. Am J Physiol Endocrinol Metab 2000;278:E234-E43. Induced Pluripotent Stem Cells: Therapeutic Applications in Monogenic and Metabolic Diseases, and Regulatory… 551[88] Abel ED, Peroni O, Kim JK, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001;409:729-33. [89] Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction. Eur J Clin Invest 2002;32(Suppl 3):14-23. [90] Bruning JC, Gautam D, Burks DJ, et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000;289:2122-5. [91] Callaghan BC, Cheng HT, Stables CL, et al. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 2012;11:521-34. [92] Laing SP, Swerdlow AJ, Slater SD, et al. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia 2003;46:760-5. [93] Pajunen P, Taskinen MR, Nieminen MS, et al. Angiographic severity and extent of coronary artery disease in patients with type 1 diabetes mellitus. Am J Cardiol 2000;86:1080-5. [94] Danne T, Bolinder J. New insulins and insulin therapy. Int J Clin Pract Suppl 2011;170:26-30. [95] Nicholson G, Hall GM. Diabetes mellitus: new drugs for a new epidemic. Br J Anaesth 2011;107:65-73. [96] Boyle ME, Seifert KM, Beer KA, et al. Guidelines for application of continuous subcutaneous insulin infusion (insulin pump) therapy in the perioperative period. J Diabetes Sci Technol 2012;6:184-90. [97] Hanaire H. External insulin pump treatment in the day-to-day management of diabetes: benefits and future prospectives. Diabetes Metab 2011;37(Suppl 4):S40-7. [98] Schaepelynck P, Darmon P, Molines L, et al. Advances in pump technology: insulin patch pumps, combined pumps and glucose sensors, and implanted pumps. Diabetes Metab 2011;37(Suppl 4):S85-93. [99] Hansson M, Tonning A, Frandsen U, et al. Artifactual insulin release from differentiated embryonic stem cells. Diabetes 2004;53:2603-9. [100] Dor Y, Brown J, Martinez OI, et al. Adult pancreatic beta cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004;429:41-6. [101] Azzi J, Geara AS, El-Sayegh S, et al. Immunological aspects of pancreatic islet cell transplantation. Expert Rev Clin Immunol 2010;6:111-24. [102] Maehr R. iPS Cells in Type 1 Diabetes Research and Treatment. Clin Pharmacol Ther 2011;89:750-3. [103] Kao DI, Chen S. Pluripotent stem cell-derived pancreatic β-cells: potential for regenerative medicine in diabetes. Regen Med 2012;7:583-93. 552 Pluripotent Stem Cells [104] Schroeder IS. Potential of Pluripotent Stem Cells for Diabetes Therapy. Curr Diab Rep 2012 (In press). [105] Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 2009;106:15768-73. [106] Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 2009;19:429-38. [107] Zhu FF, Zhang PB, Zhang DH, et al. Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells. Diabetologia 2011;54:2325-36. [108] Pan FC, Wright C. Pancreas Organogenesis: From Bud to Plexus to Gland. Dev Dynamics 2011;240:530–65. [109] Jeon K, Lim H, Kim JH, al. Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev 2012 (In press). [110] Ohmine S, Squillace KA, Hartjes KA, et al. Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency. Aging (Albany NY) 2012;4:60-73. [111] Mummery C. Induced Pluripotent Stem Cells - A Cautionary Note. N Engl J Med 2011;364:2160-2. [112] Hussein SM, Batada NN, Vuoristo S, et al. Copy number variation and selection during reprogramming to pluripotency. Nature 2011;471:58-62. [113] Gore A, Li Z, Fung HL, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011;471:63-7. [114] Lister R, Pelizzola M, Kida YS, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011;471:68-73. [115] Pera MF. Stem cells: the dark side of induced pluripotency. Nature 2011;471:46-7. [116] Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010;467:285–90. [117] European Medicines Agency. Available: 2012 July 30). [118] Halme DG, Kessler DA. FDA Regulation of Stem-Cell-Based Therapies. N Engl J Med 2006;355:1730-5. [119] CFR - Code of Federal Regulations Title 21. Part 1271-Human Cells, Tissues, and Cellular and Tissue-Based Products. Available: (Accessed 2012 July 30). [120] Proposed approach to regulation of cellular and tissue-based products. The Food and Drug Administration. Available:‐ Induced Pluripotent Stem Cells: Therapeutic Applications in Monogenic and Metabolic Diseases, and Regulatory… UCM062601.pdf. (Accessed 2012 July 30). [121] Rao M, Condic ML. Alternative sources of pluripotent stem cells: scientific solutions to an ethical dilemma. Stem Cells Dev 2008;17:1-10. [122] Hyun I. The bioethics of stem cell research and therapy. J Clin Invest 2010;120:71-5. [123] Science for the Twunty-First Century: a New Commitment.UNESCO. [124] Wong GK, Chiu AT. Gene therapy, gene targeting and induced pluripotent stem cells: Applications in monogenic disease treatment. Biotechnol Adv 2011;29:1-10. [125] Mannucci PM, Tuddenham EG The hemophilias – from royal genes to gene therapy.N Engl J Med 2001;344:1773-9.