Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Intermediate algebras of semialgebraic functions

dc.contributor.authorBaro González, Elías
dc.contributor.authorFernando Galván, José Francisco
dc.contributor.authorGamboa Mutuberria, José Manuel
dc.date.accessioned2025-05-16T10:34:42Z
dc.date.available2025-05-16T10:34:42Z
dc.date.issued2025
dc.description.abstractWe characterize intermediate ℝ-algebras A between the ring of semialgebraic functions (X) and the ring ∗(X) of bounded semialgebraic functions on a semialgebraic set X as rings of fractions of (X). This allows us to compute the Krull dimension of A, the transcendence degree over ℝ of the residue fields of A and to obtain a Łojasiewicz inequality and a Nullstellensatz for archimedean ℝ-algebras A. In addition we study intermediate ℝ-algebras generated by proper ideals and we prove an extension theorem for functions in such ℝ-algebras.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.statusunpub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/120132
dc.language.isoeng
dc.rights.accessRightsopen access
dc.subject.keywordAlgebraic geometry
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleIntermediate algebras of semialgebraic functions
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication8695b08a-762f-4ef9-ad24-b6fe687ab7cd
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8695b08a-762f-4ef9-ad24-b6fe687ab7cd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gamboa_intermediate_algebras.pdf
Size:
216.84 KB
Format:
Adobe Portable Document Format

Collections