Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Thermodynamics of a pure substance at the triple point

dc.contributor.authorVelasco Maíllo, Santiago
dc.contributor.authorFernández Pineda, Cristóbal
dc.date.accessioned2023-06-20T10:36:57Z
dc.date.available2023-06-20T10:36:57Z
dc.date.issued2007-12
dc.description© 2007 American Association of Physics Teacher. One of the authors (S.V.) acknowledges financial support by the Ministerio de Educación y Ciencia of Spain under Grant Nos. FIS2005-05081 FEDER and FIS2006-03764 FEDER.
dc.description.abstractA thermodynamic study of a pure substance at the triple point. is presented. In particular, we show that the mass fractions of the phases coexisting at the triple point obey lever rules in the specific entropy-specific volume diagram, and the relative changes in the mass fractions present in each phase along reversible isochoric and adiabatic processes of a pure substance at the triple point are governed by the relative sizes of the segments of the triple-point line in the pressure-specific volume diagram and in the temperature-specific entropy diagram. Applications to the ordinary triple point of water and to the triple point of Al2SiO5 polymorphs are presented.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia of Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22667
dc.identifier.doi10.1119/1.2779880
dc.identifier.issn0002-9505
dc.identifier.officialurlhttp://dx.doi.org/10.1119/1.2779880
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50780
dc.issue.number12
dc.journal.titleAmerican Journal of Physics
dc.language.isoeng
dc.page.final1091
dc.page.initial1086
dc.publisherAmerican Association of Physics Teachers
dc.relation.projectIDFIS2005-05081 FEDER
dc.relation.projectIDFIS2006-03764 FEDER
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleThermodynamics of a pure substance at the triple point
dc.typejournal article
dc.volume.number75
dcterms.references1. H. Preston-Thomas, The International Temperature Scale of 1990 (ITS-90), Metrologia 27, 3–10 (1990), http://dx.doi.org/10.1088/0026-1394/27/1/002. 2. R. DeHoff, Thermodynamics in Material Sciences (Wiley, New York, 2005). 3. L. Cemič, Thermodynamics in Mineral Sciences (Springer, Berlin, 2005). 4. D. M. Kerrick, The Al2SiO5 polymorphs, Rev. Mineral. 22, 223–253 (1990). 5. D. L. Withney, Coexisting andalusite, kyanite, and sillimanite: Sequential formation of three Al2SiO5 polymorphs during progressive metamorphism near the triple point, Sivrihisar, Turkey, Am. Mineral. 87, 405–416 (2002). 6. J. Kestin, A Course in Thermodynamics (Hemisphere, Washington, 1979), Vol. II, p. 347. 7. J. de Heer, Phenomenological Thermodynamics (Prentice Hall, Englewood, NJ, 1986), p. 267. 8. J. Kestin, A Course in Thermodynamics (Hemisphere, Washington, 1979), Vol. I, pp. 285 and J. Kestin, A Course in Thermodynamics (Hemisphere, Washington, 1979), Vol. I, pp. 289–292. 9. F. Schwabl, Statistical Mechanics (Springer, Berlin, 2006), 2nd ed., pp. 141–144. 10. J. W. Gibbs, A method of geometrical representation of the thermodynamic properties of substances by means of surfaces, Trans. Conn. Acad. Arts Sci. 2, 382–404 (1873). 11. M. W. Zemansky and R. C. Herman, The Gibbs and Mollier thermodynamic surfaces, Am. J. Phys. 4, 194–196 (1936), http://dx.doi.org/10.1119/1.1999114. 12. G. Bruhat, Thermodynamique (Masson et Cie., Paris, 1962), 5th ed., pp. 138 and G. Bruhat, Thermodynamique (Masson et Cie., Paris, 1962), 5th ed., 299–301. 13. G. E. Gyftopoulos and G. P. Beretta, Thermodynamics Foundations and Applications (Macmillan, New York, 1991), pp. 298 and G. E. Gyftopoulos and G. P. Beretta, Thermodynamics Foundations and Applications (Macmillan, New York, 1991). 14. H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985), 2nd ed., p. 28. 15. C. B. P. Finn, Thermal Physics (Chapman & Hall, London, 1993), 2nd ed., pp. 14. 16. M. Bailyn, A Survey of Thermodynamics (American Institute of Physics, New York, 1994), pp. 46, M. Bailyn, A Survey of Thermodynamics (American Institute of Physics, New York, 1994), p. 221, and M. Bailyn, A Survey of Thermodynamics (American Institute of Physics, New York, pp. 258–259. 17. G. Carrington, Basic Thermodynamics (Oxford U. P., New York, 1994), pp. 8 and G. Carrington, Basic Thermodynamics (Oxford U. P., New York, 1994), 293–294. 18. M. W. Zemansky and R. H. Dittman, Heat and Thermodynamics (McGraw-Hill, New York, 1997), 7th ed., pp. 25 and M. W. Zemansky and R. H. Dittman, Heat and Thermodynamics (McGraw-Hill, New York, 1997), 7th ed.pp. , 225–228. 19. R. E. Sonntang and G. J. Van Wylen, Introduction to Thermodynamics Classical and Statistical (Wiley, New York, 1991), Table A. 1SI, pp. 627 and R. E. Sonntang and G. J. Van Wylen, Introduction to Thermodynamics Classical and Statistical (Wiley, New York, 1991), Table A.1.5SI, p. 643. 20. B. S. Hemingway, R. A. Robie, H. T. Evans, Jr., and D. M. Kerrick, Heat capacities and entropies of sillimanite, fibriolite, andalusite, kyanite, and quartz and the Al2SiO5 phase diagram, Am. Mineral. 76, 1597–1613 (1991). 21. T. J. B. Holland and R. Powell, An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol. 16, 309–343 (1998).
dspace.entity.typePublication
relation.isAuthorOfPublicationae625a23-ad7c-4def-ac08-a08f29fbf9c6
relation.isAuthorOfPublication.latestForDiscoveryae625a23-ad7c-4def-ac08-a08f29fbf9c6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FpineNO01.pdf
Size:
642.45 KB
Format:
Adobe Portable Document Format

Collections