Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Self-similar blow-up for a reaction-diffusion system

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorMedina Reus, Elena
dc.contributor.authorVelázquez, J.J. L.
dc.date.accessioned2023-06-20T17:02:11Z
dc.date.available2023-06-20T17:02:11Z
dc.date.issued1998-09-24
dc.description.abstractThis work is concerned with the following system: [GRAPHICS] which is a model to describe several phenomena in which aggregation plays a crucial role as, for instance, motion of bacteria by chemotaxis and equilibrium of self-attracting clusters. When the space dimension N is equal to three, we show here that (S) has radial solutions with finite mass that blow-up in finite time in a self-similar manner. When N = 2, however, no radial solution with finite mass may give rise to self-similar blow-up.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16946
dc.identifier.doi10.1016/S0377-0427(98)00104-6
dc.identifier.issn0377-0427
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0377042798001046
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57664
dc.issue.number1-2
dc.journal.titleJournal of Computational and Applied Mathematics
dc.language.isoeng
dc.page.final119
dc.page.initial99
dc.publisherElsevier Science Bv
dc.relation.projectIDGrant PB96-0614.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.956.4
dc.subject.cdu539.2
dc.subject.keywordReaction-diffusion systems
dc.subject.keywordblow-up
dc.subject.keywordself-similar behaviour
dc.subject.keywordmatched asymptotic expansions
dc.subject.keywordchemotaxis
dc.subject.keywordequations
dc.subject.keywordaggregation
dc.subject.keywordclusters
dc.subject.keywordmodel
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleSelf-similar blow-up for a reaction-diffusion system
dc.typejournal article
dc.volume.number97
dcterms.referencesP. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., to appear. S. Childress, J.K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci. 56 (1981) 217-237. J.W. Dold, Analysis of the early stage of thermal runaway, Quart. J. Mech. Appl. Math. 38 (1985) 361-387. Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985) 297-319. V.A. Galaktionov, S.A. Posashkov, Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Differential Equations 22 (7) (1986) 1165-1173. M.A. Herrero, J.J.L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann. 306 (3) (1996) 583-623. M.A. Herrero, J.J.L. Velázquez, Chemotactic collapse for the Keller-Segel model. J. Math. Biol. 35 (1996) 177-194. M.A. Herrero, J.J.L. Velázquez, A blow-up mechanism for a chemotaxis problem, Annali Scuola Normale Sup. Pisa, to appear. M.A. Herrero, E. Medina, J.J.L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity 10 (1997) 1739-1754. W. Jäger, S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (2) (1992) 819-824. E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970) 399-415. A.A.Lacey, The form of blow-up for nonlinear parabolic equations, Proc. Roy. Soc. Edinburg A 98 (1984) 183-202. T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl. (1995) 1-21. V. Nanjundiah, Chemotaxis signal relaying and aggregation morphology, J. Theor. Biology 42 (1973) 63-105. J.J.L. Velázquez, Classification of singularities for blowing-up solutions in higher dimensions, Trans. Amer. Math. Soc. 338 (1) (1993) 441-464. G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rat. Mech. Anal. 119 (1992) 355-391. G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Anal. Math. 59 (1992) 251-272.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero28.pdf
Size:
927.81 KB
Format:
Adobe Portable Document Format

Collections