On knots that are universal
dc.contributor.author | Montesinos Amilibia, José María | |
dc.contributor.author | Hilden, Hugh Michael | |
dc.contributor.author | Lozano Imízcoz, María Teresa | |
dc.date.accessioned | 2023-06-21T02:02:43Z | |
dc.date.available | 2023-06-21T02:02:43Z | |
dc.date.issued | 1985 | |
dc.description.abstract | The authors construct a cover S3→S3 branched over the "figure eight" knot with preimage the "roman link" and a cover S3→S3 branched over the roman link with preimage containing the Borromean rings L. Since L is universal (i.e. every closed, orientable 3-manifold can be represented as a covering of S3 branched over L) it follows that the "figure eight'' knot is universal, thereby answering a question of Thurston in the affirmative. More generally, it is shown that every rational knot or link which is not toroidal is universal | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comisión Asesora de Investigación Científica y Técnica. | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17185 | |
dc.identifier.doi | 10.1016/0040-9383(85)90019-9 | |
dc.identifier.issn | 0040-9383 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/0040938385900199 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64696 | |
dc.issue.number | 4 | |
dc.journal.title | Topology. An International Journal of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 504 | |
dc.page.initial | 49 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.162.8 | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | On knots that are universal | |
dc.type | journal article | |
dc.volume.number | 24 | |
dcterms.references | R. H. Fox: A quick trip through knot theory. Topology of 3-manifolds and Related Topics. Prentice-Hall:Englewood Cliffs (1962). C. MCA. Gordon and W. Heil: Simply connected branched coverings of S’. Proc. Am. Math. Sot. 35 (1972), 287-288. A. Hatcher and W. Thurston: Incompressible surfaces in 2-bridge knot complements. fnuent. Math. (to appear). H. M. Hilden, M . T. Lozano and J. M. Montesinos:The Whitehead link, the Borromean ringsand the knot 946 are universal, Collectanea Mathematica, XXXIV (1983), pp. 19–28. H. Schubertk: Knoten mit zwei Brücken. Math. Z. 65 (1956), 133-170. W. Thurstonu: Universal links. (preprint, 1982). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1