Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On knots that are universal

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.date.accessioned2023-06-21T02:02:43Z
dc.date.available2023-06-21T02:02:43Z
dc.date.issued1985
dc.description.abstractThe authors construct a cover S3→S3 branched over the "figure eight" knot with preimage the "roman link" and a cover S3→S3 branched over the roman link with preimage containing the Borromean rings L. Since L is universal (i.e. every closed, orientable 3-manifold can be represented as a covering of S3 branched over L) it follows that the "figure eight'' knot is universal, thereby answering a question of Thurston in the affirmative. More generally, it is shown that every rational knot or link which is not toroidal is universal
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComisión Asesora de Investigación Científica y Técnica.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17185
dc.identifier.doi10.1016/0040-9383(85)90019-9
dc.identifier.issn0040-9383
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0040938385900199
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64696
dc.issue.number4
dc.journal.titleTopology. An International Journal of Mathematics
dc.language.isoeng
dc.page.final504
dc.page.initial49
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162.8
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn knots that are universal
dc.typejournal article
dc.volume.number24
dcterms.referencesR. H. Fox: A quick trip through knot theory. Topology of 3-manifolds and Related Topics. Prentice-Hall:Englewood Cliffs (1962). C. MCA. Gordon and W. Heil: Simply connected branched coverings of S’. Proc. Am. Math. Sot. 35 (1972), 287-288. A. Hatcher and W. Thurston: Incompressible surfaces in 2-bridge knot complements. fnuent. Math. (to appear). H. M. Hilden, M . T. Lozano and J. M. Montesinos:The Whitehead link, the Borromean ringsand the knot 946 are universal, Collectanea Mathematica, XXXIV (1983), pp. 19–28. H. Schubertk: Knoten mit zwei Brücken. Math. Z. 65 (1956), 133-170. W. Thurstonu: Universal links. (preprint, 1982).
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos11.pdf
Size:
334.45 KB
Format:
Adobe Portable Document Format

Collections