On knots that are universal

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.date.accessioned2023-06-21T02:02:43Z
dc.date.available2023-06-21T02:02:43Z
dc.date.issued1985
dc.description.abstractThe authors construct a cover S3→S3 branched over the "figure eight" knot with preimage the "roman link" and a cover S3→S3 branched over the roman link with preimage containing the Borromean rings L. Since L is universal (i.e. every closed, orientable 3-manifold can be represented as a covering of S3 branched over L) it follows that the "figure eight'' knot is universal, thereby answering a question of Thurston in the affirmative. More generally, it is shown that every rational knot or link which is not toroidal is universal
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComisión Asesora de Investigación Científica y Técnica.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17185
dc.identifier.doi10.1016/0040-9383(85)90019-9
dc.identifier.issn0040-9383
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0040938385900199
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64696
dc.issue.number4
dc.journal.titleTopology. An International Journal of Mathematics
dc.language.isoeng
dc.page.final504
dc.page.initial49
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162.8
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn knots that are universal
dc.typejournal article
dc.volume.number24
dcterms.referencesR. H. Fox: A quick trip through knot theory. Topology of 3-manifolds and Related Topics. Prentice-Hall:Englewood Cliffs (1962). C. MCA. Gordon and W. Heil: Simply connected branched coverings of S’. Proc. Am. Math. Sot. 35 (1972), 287-288. A. Hatcher and W. Thurston: Incompressible surfaces in 2-bridge knot complements. fnuent. Math. (to appear). H. M. Hilden, M . T. Lozano and J. M. Montesinos:The Whitehead link, the Borromean ringsand the knot 946 are universal, Collectanea Mathematica, XXXIV (1983), pp. 19–28. H. Schubertk: Knoten mit zwei Brücken. Math. Z. 65 (1956), 133-170. W. Thurstonu: Universal links. (preprint, 1982).
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos11.pdf
Size:
334.45 KB
Format:
Adobe Portable Document Format

Collections