Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lip-density and algebras of Lipschitz functions on metric spaces.

dc.contributor.authorGarrido, M. Isabel
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.contributor.authorRangel, Yenny C.
dc.date.accessioned2023-06-20T03:32:44Z
dc.date.available2023-06-20T03:32:44Z
dc.date.issued2010
dc.descriptionProceedings of the Seventh Italian-Spanish Conference of General Topology and its Applications, Badajoz (Spain), September 7-10, 2010.
dc.description.abstractOur aim in this note is to give an extension of the classical Myers-Nakai theorem in the context of Finsler manifolds. To achieve this, we provide a general result in this line for subalgebras of bounded Lipschitz functions on length metric spaces. We also establish some connection with the uniform approximation of bounded Lipschitz functions by functions in the subalgebra, keeping control on the Lipschitz constants
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipD.G.I.
dc.description.sponsorshipUCLA (Venezuela)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21358
dc.identifier.issn0213-8743
dc.identifier.officialurlhttp://www.eweb.unex.es/eweb/extracta/Vol-25-3/25B3Jaramillo.pdf
dc.identifier.relatedurlhttp://www.eweb.unex.es/eweb/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43816
dc.issue.number3
dc.journal.titleExtracta Mathematicae
dc.language.isoeng
dc.page.final261
dc.page.initial249
dc.publisherUniversidad de Extremadura, Departamento de Matemáticas
dc.relation.projectIDMTM2009-0784
dc.relation.projectID004-RCT-2010
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.cdu515.124
dc.subject.keywordAlgebras of Lipschitz functions
dc.subject.keywordapproximation
dc.subject.keywordFinsler manifolds.
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleLip-density and algebras of Lipschitz functions on metric spaces.
dc.typejournal article
dc.volume.number25
dcterms.referencesD. Bao, S.S. Chern, Z. Shen, “ An Introduction to Riemann-Finsler Geometry ”, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000. S. Deng, Z. Hou, The group of isometries of a Finsler space, Pacific J. Math. 207 (2002), 149 – 155. M.I. Garrido, J.A. Jaramillo, Variations on the Banach-Stone theorem, Extracta Math. 17 (2002), 351 – 383. M.I. Garrido, J.A. Jaramillo, Homomorphisms on function lattices, Monatsh. Math. 141 (2004), 127 – 146. M.I. Garrido, J.A. Jaramillo, Lipschitz-type functions on metric spaces, J. Math. Anal. Appl. 340 (2008), 282 – 290. M.I. Garrido, J.A. Jaramillo, Y. Rangel, Algebras of Differentiable Functions on Riemannian Manifolds, Bull. Lond. Math. Soc. 41 (2009), 993 – 1001. M.I. Garrido, J.A. Jaramillo, Y. Rangel, Smooth approximation of Lipschitz functions on Finsler Manifolds, preprint. R.E. Greene, H. Wu, C1 approximations of convex, subharmonic and plurisubharmonic functions, Ann. Sci. Ecole Norm. Sup. (4) 12 (1979),47 – 84. J.R. Isbell, Algebras of uniformly continuous functions, Ann. of Math.(2) 68 (1958), 96 – 125. S.B. Myers, Algebras of differentiable functions, Proc. Amer. Math. Soc. 5 (1954), 917 – 922. S.B. Myers, N.E. Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. (2) 40 (1939), 400 – 416. M. Nakai, Algebras of some differentiable functions on Riemannian manifolds, Japan. J. Math. 29 (1959), 60 – 67.
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garrido8.pdf
Size:
113.24 KB
Format:
Adobe Portable Document Format

Collections