Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On global Nash functions

Loading...
Thumbnail Image

Full text at PDC

Publication date

1994

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Société Mathématique de France
Citations
Google Scholar

Citation

Abstract

Let M superset-of R be a compact Nash manifold, and N (M) [resp. O(M)] its ring of global Nash (resp. analytic) functions. A global Nash (resp. analytic) set is the zero set of finitely many global Nash (resp. analytic) functions, and we have the usual notion of irreducible set. Then we say that separation holds for M if every Nash irreducible set is analytically irreducible. The main result of this paper is that separation holds if and only if every semialgebraic subset of M described by s global analytic inequalities can also be described by s global Nash inequalities. In passing, we also prove that when separation holds, every Nash function on a Nash set extends to a global Nash function on M.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections