On Banach spaces that contain l1 as complemented subspace.(Spanish:Sobre los espacios de Banach que contienen a l1 como complementado).
dc.contributor.author | Cembranos, Pilar | |
dc.date.accessioned | 2023-06-21T02:06:36Z | |
dc.date.available | 2023-06-21T02:06:36Z | |
dc.date.issued | 1981 | |
dc.description.abstract | Let E and F be two Banach spaces, and let L(E,F) [WK(E,F)] denote the space of all continuous [weakly compact] linear operators from E to F. Obviously, if F is reflexive then L(E,F)=WK(E,F). The author proves that the equality L(E,F)=WK(E,F) implies the reflexivity of F if and only if E contains l1 as a complemented subspace. In the last part of the note she investigates when the space C(T,E) of all continuous functions on the compact space T with values in the Banach space E contains l1 as a complemented subspace. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22591 | |
dc.identifier.issn | 0034-0596 | |
dc.identifier.officialurl | http://dmle.cindoc.csic.es/revistas/detalle.php?numero=5679 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64873 | |
dc.issue.number | 2 | |
dc.journal.title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid | |
dc.language.iso | spa | |
dc.page.final | 513 | |
dc.page.initial | 510 | |
dc.publisher | Real Academia de Ciencias Exactas, Físicas y Naturales | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Duality and reflexivity | |
dc.subject.keyword | Banach spaces | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | On Banach spaces that contain l1 as complemented subspace.(Spanish:Sobre los espacios de Banach que contienen a l1 como complementado). | |
dc.type | journal article | |
dc.volume.number | 75 | |
dcterms.references | BESSAGA, C. and PELCZYNSKI, A. (1958). On bases and unconditional convergence of series in Banach spaces. Studia Matñ., 17, 151-164. FIERRO,C. A result on weakly compact operators in spaces of vector-valued continuous functions. (Por aparecer). LINDENSTRAUSS,J. and TZAFRIRI,L. (1973). Classical Banach Spaces I, Springer-Verlag. SEMADENI, Z. (1971).Banach spaces of continuous functions. Warsano:PWN. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1