Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Banach spaces that contain l1 as complemented subspace.(Spanish:Sobre los espacios de Banach que contienen a l1 como complementado).

dc.contributor.authorCembranos, Pilar
dc.date.accessioned2023-06-21T02:06:36Z
dc.date.available2023-06-21T02:06:36Z
dc.date.issued1981
dc.description.abstractLet E and F be two Banach spaces, and let L(E,F) [WK(E,F)] denote the space of all continuous [weakly compact] linear operators from E to F. Obviously, if F is reflexive then L(E,F)=WK(E,F). The author proves that the equality L(E,F)=WK(E,F) implies the reflexivity of F if and only if E contains l1 as a complemented subspace. In the last part of the note she investigates when the space C(T,E) of all continuous functions on the compact space T with values in the Banach space E contains l1 as a complemented subspace.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22591
dc.identifier.issn0034-0596
dc.identifier.officialurlhttp://dmle.cindoc.csic.es/revistas/detalle.php?numero=5679
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64873
dc.issue.number2
dc.journal.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid
dc.language.isospa
dc.page.final513
dc.page.initial510
dc.publisherReal Academia de Ciencias Exactas, Físicas y Naturales
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordDuality and reflexivity
dc.subject.keywordBanach spaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleOn Banach spaces that contain l1 as complemented subspace.(Spanish:Sobre los espacios de Banach que contienen a l1 como complementado).
dc.typejournal article
dc.volume.number75
dcterms.referencesBESSAGA, C. and PELCZYNSKI, A. (1958). On bases and unconditional convergence of series in Banach spaces. Studia Matñ., 17, 151-164. FIERRO,C. A result on weakly compact operators in spaces of vector-valued continuous functions. (Por aparecer). LINDENSTRAUSS,J. and TZAFRIRI,L. (1973). Classical Banach Spaces I, Springer-Verlag. SEMADENI, Z. (1971).Banach spaces of continuous functions. Warsano:PWN.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13.pdf
Size:
151.05 KB
Format:
Adobe Portable Document Format

Collections