Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hodge polynomials of the moduli spaces of pairs.

dc.contributor.authorMuñoz, Vicente
dc.contributor.authorOrtega, Daniel
dc.contributor.authorVázquez Gallo, M. Jesús
dc.date.accessioned2023-06-20T10:34:22Z
dc.date.available2023-06-20T10:34:22Z
dc.date.issued2007
dc.description.abstractLet X be a smooth projective curve of genus g ≥ 2 over the complex numbers. A holomorphic pair on X is a couple (E,ϕ), where E is a holomorphic bundle over X of rank n and degree d, and ϕ ∈ H0(E) is a holomorphic section. In this paper, we determine the Hodge polynomials of the moduli spaces of rank 2 pairs, using the theory of mixed Hodge structures. We also deal with the case in which E has fixed determinant.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21038
dc.identifier.doi10.1142/S0129167X07004266
dc.identifier.issn0129-167X
dc.identifier.officialurlhttp://www.worldscientific.com/doi/abs/10.1142/S0129167X07004266
dc.identifier.relatedurlhttp://www.worldscientific.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50592
dc.issue.number6
dc.journal.titleInternational journal of mathematics
dc.language.isoeng
dc.page.final721
dc.page.initial695
dc.publisherWorld Scientific
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordModuli space
dc.subject.keywordComplex curve
dc.subject.keywordVector bundle
dc.subject.keywordStable triple
dc.subject.keywordHodge numbers
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleHodge polynomials of the moduli spaces of pairs.
dc.typejournal article
dc.volume.number18
dcterms.referencesAtiyah, M. F.; Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy.Soc. London Ser. A 308 (1982) 523–615. Bertram, A.: Stable pairs and stable parabolic pairs. J. Algebraic Geom. 3 (1994), no. 4, 703–724. Bradlow, S. B.; Daskalopoulos: Moduli of stable pairs for holomorphic bundles over Riemann surfaces. Int. J. Math. 2 (1991), 477–513. Bradlow, S. B.; Garcıa–Prada, O.: Stable triples,equivariant bundles and dimensional reduction. Math. Ann. 304 (1996), no. 2, 225–252. Bradlow, S. B.; Garcıa–Prada, O.; Gothen, P.B: Moduli spaces of holomorphic triples over compact Riemann surfaces. Math. Ann. 328 (2004), no. 1-2, 299–351. Burillo, J.: El polinomio de Poincare–Hodge de un producto simetrico de variedades kahlerianas compactas. Collect. Math. 41 (1990), no. 1, 59–69. Del Baño, S.: On the motive of moduli spaces of rank two vector bundles over a curve. Compositio Math. 131 (2002),no. 1, 1–30. Deligne, P.: Theorie de Hodge I,II,III. In Proc. I.C.M., vol. 1, 1970, pp. 425–430; in Publ. Math.I.H.E.S. 40 (1971), 5–58; ibid. 44 (1974), 5–77. Durfee, A.H.: Algebraic varieties which are a disjoint union of subvarieties, Lecture Notes in Pure Appl. Math. 105, Marcel Dekker, 1987, pp. 99–102. Danivol, V.I.; Khovanskiı, A.G.: Newton polyhedra and an algorithm for computing Hodge-Deligne numbers, Math. U.S.S.R. Izvestiya 29 (1987), 279–298. Desale, U. V.; Ramanan, S.: Poincare polynomials of the variety of stable bundles. Math. Ann.216 (1975), no. 3, 233–244. Earl, R.; Kirwan, F.: The Hodge numbers of the moduli spaces of vector bundles over a Riemann surface. Q. J. Math. 51 (2000), no. 4, 465–483. Garcıa–Prada, O.: Dimensional reduction of stable bundles, vortices and stable pairs. Internat.J. Math. 5 (1994), no. 1, 1–52. Garcıa–Prada, O.; Gothen, P.B.; Muñoz, V.: Betti numbers of the moduli space of rank 3 parabolic Higgs bundles. Memoirs Amer. Math. Soc. In press. Harder, G.; Narasimhan, M. S.: On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. 212 (1974/75), 215–248. Newstead, P.E.: Topological properties of some spaces of stable bundles. Topology 6 (1967)241–262. Newstead, P.E.: Characteristic classes of stable bundles of rank 2 over an algebraic curve. Trans.Amer. Math. Soc. 169 (1972), 337–345. Schmitt, A.: A universal construction for the moduli spaces of decorated vector bundles. Transform.Groups 9 (2004), no. 2, 167–209. Thaddeus, M.: Stable pairs, linear systems and the Verlinde formula. Invent. Math. 117 (1994),no. 2, 317–353.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz36libre.pdf
Size:
326.63 KB
Format:
Adobe Portable Document Format

Collections