Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Planar Hamiltonian systems: Index theory and applications to the existence of subharmonics

Loading...
Thumbnail Image

Full text at PDC

Publication date

2023

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

A. Boscaggin, E. Muñoz-Hernández, Planar Hamiltonian systems: Index theory and applications to the existence of subharmonics, Nonlinear Analysis 226 (2023) 113142. https://doi.org/10.1016/j.na.2022.113142.

Abstract

We consider a planar Hamiltonian system of the type Jz' = ∇zH(t, z) , where H : R×R2 → R is a function periodic in the time variable, such that ∇zH(t, 0) ≡ 0 and ∇zH(t, z) is asymptotically linear for |z| → +∞. After revisiting the index theory for linear planar Hamiltonian systems, by using the Poincaré–Birkhoff fixed point theorem we prove that the above nonlinear system has subharmonic solutions of any order large enough, whenever the rotation numbers (or, equivalently, the mean Conley–Zehnder indices) of the linearizations of the system at zero and at infinity are different. Applications are given to the case of planar Hamiltonian systems coming from second order scalar ODEs.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections