Escape to infinity in the presence of magnetic fields.
dc.contributor.author | Díaz-Cano Ocaña, Antonio | |
dc.contributor.author | Gonzalez Gascón, F. | |
dc.date.accessioned | 2023-06-20T00:10:38Z | |
dc.date.available | 2023-06-20T00:10:38Z | |
dc.date.issued | 2012 | |
dc.description.abstract | Escape to infinity is proved to occur when a charge moves under the action of the magnetic field created by a finite number of planar closed wires. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | GAAR | |
dc.description.sponsorship | GAAR Grupos UCM | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14970 | |
dc.identifier.doi | 10.1090/S0033-569X-2011-01248-4 | |
dc.identifier.issn | 0033-569X | |
dc.identifier.officialurl | http://www.ams.org/journals/qam/2012-70-01/S0033-569X-2011-01248-4/S0033-569X-2011-01248-4.pdf | |
dc.identifier.relatedurl | http://www.ams.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42134 | |
dc.issue.number | 1 | |
dc.journal.title | Quarterly of Applied Mathematics | |
dc.language.iso | eng | |
dc.page.final | 51 | |
dc.page.initial | 45 | |
dc.publisher | Brown University | |
dc.relation.projectID | MTM2008-00272 | |
dc.relation.projectID | 910444 | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/es/ | |
dc.subject.cdu | 512 | |
dc.subject.keyword | Escape to infinity | |
dc.subject.keyword | Magnetic field | |
dc.subject.keyword | Lorentz equation | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Escape to infinity in the presence of magnetic fields. | |
dc.type | journal article | |
dc.volume.number | 70 | |
dcterms.references | S. Ulam, Problems in modern mathematics, Science Editions, John Wiley & Sons, Inc., 1964. J. Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Phys. Med. Biol. 32 (1987), 11–22. F. Gonz´alez-Gasc´on, D. Peralta-Salas, Motion of a charge in the magnetic field created by wires: impossibility of reaching the wires, Phys. Lett. A. 333 (2004), 72–78. F. Gonz´alez-Gasc´on, D. Peralta-Salas, Escape to infinity in a Newtonian potential, J. Phys. A 33 (2000), 5361–5368. F. Gonz´alez-Gasc´on, D. Peralta-Salas, Escape to infinity under the action of a potential and a constant electromagnetic field, J. Phys. A 36 (2003), 6441–6455. Y. Matsuno, Two-dimensional dynamical system associated with Abel’s nonlinear differential equation, J. Math. Phys. 33 (1992), 412–421. A. Goriely, C. Hyde, Finite-time blow-up in dynamical systems, Phys. Lett. A 250 (1998), 311–318. C. Marchioro, Solution of a three-body scattering problem in one dimension, J. Math. Phys. 11 (1970), 2193-2196. L.P. Fulcher, B.F. Davis, D.A. Rowe, An approximate method for classical scattering problems, Amer. J. Phys. 44 (1976), 956–959. L. Vaserstein, On systems of particles with finite-range and/or repulsive interactions, Commun. Math. Phys. 69 (1979), 31-56. G. Galperin, Asymptotic behaviour of particle motion under repulsive forces, Commun.Math. Phys. 84 (1982), 547-556. E. Gutkin, Integrable Hamiltonians with exponential potential, Phys. D 16 (1985), 398–404. E. Gutkin, Asymptotics of trajectories for cone potentials, Phys. D 17 (1985), 235–242. V.J. Menon, D.C. Agrawal, Solar escape revisited, Amer. J. Phys. 54 (1986), 752–753. E. Gutkin, Continuity of scattering data for particles on the line with directed repulsive interactions, J. Math. Phys. 28 (1987), 351–359. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 134ad262-ecde-4097-bca7-ddaead91ce52 | |
relation.isAuthorOfPublication.latestForDiscovery | 134ad262-ecde-4097-bca7-ddaead91ce52 |
Download
Original bundle
1 - 1 of 1