Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Evolution of the vortex and the asymmetrical parts of orbital angular momentum in separable first-order optical systems

dc.contributor.authorAlieva Krasheninnikova, Tatiana
dc.contributor.authorBastiaans, Martin J.
dc.date.accessioned2023-06-20T10:49:08Z
dc.date.available2023-06-20T10:49:08Z
dc.date.issued2004-07-15
dc.description© 2004 Optical Society of America. T. Alieva thanks the Spanish Ministry of Science and Technology for financial support of this research (Ramon y Cajal grant and project TIC 2002-01846). M. J. Bastiaan’s e-mail address is m.j.bastiaans@tue.nl. T. Alieva’s e-mail address is talieva@fis.ucm.es.
dc.description.abstractWe analyze the evolution of the vortex and the asymmetrical parts of orbital angular momentum during its propagation through separable first-order optical systems. We find that the evolution of the vortex part depends on only parameters a(x), a(y), b(x), and b(y) of the ray transformation matrix and that isotropic systems with the same ratio b/a produce the same change of the vortex part of the orbital angular momentum. Finally, it is shown that, when light propagates through an optical fiber with a quadratic refractive-index profile, the vortex part of the orbital angular momentum cannot change its sign more than four times per period.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinistry of Science and Technology
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27721
dc.identifier.doi10.1364/OL.29.001587
dc.identifier.issn0146-9592
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OL.29.001587
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51280
dc.issue.number14
dc.journal.titleOptics letters
dc.language.isoeng
dc.page.final1589
dc.page.initial1587
dc.publisherOptical Society of America
dc.relation.projectIDTIC 2002-01846
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordWigner distribution function
dc.subject.keywordPartially coherent-light
dc.subject.keywordBeams
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleEvolution of the vortex and the asymmetrical parts of orbital angular momentum in separable first-order optical systems
dc.typejournal article
dc.volume.number29
dcterms.references1. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, Phys. Rev. A 56, 163 (1997). 2. M. S. Soskin and M. V. Vasnetsov, Prog. Opt. 42, 219 (2001). 3. A. Ya. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, and M. S. Soskin, JETP Lett. 75, 127 (2002). 4. A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, J. Opt. Soc. Am. A 20, 1635 (2003). 5. H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, Opt. Lett. 28, 968 (2003). 6. J. Serna and J. M. Movilla, Opt. Lett. 26, 405 (2001). 7. M. J. Bastiaans, Opt. Commun. 25, 26 (1978). 8. M. J. Bastiaans and T. Alieva, Opt. Lett. 28, 2443 (2003). 9. M. J. Bastiaans, J. Opt. Soc. Am. A 17, 2475 (2000). 10. M. J. Bastiaans, J. Opt. Soc. Am. 69, 1710 (1979). 11. M. J. Bastiaans, J. Opt. Soc. Am. A 3, 1227 (1986). 12. R. K. Luneberg, Mathematical Theory of Optics (University of California Press, Berkeley, Calif., 1966). 13. K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, New York, 1979), Chap. 9. 14. A. W. Lohmann, J. Opt. Soc. Am. A 10, 2181 (1993). 15. G. P. Agrawal, A. K. Ghatak, and C. L. Metha, Opt. Commun. 12, 333 (1974). 16. D. Mendlovic and H. M. Ozaktas, J. Opt. Soc. Am. A 10, 1875 (1993).
dspace.entity.typePublication
relation.isAuthorOfPublicationf1512137-328a-4bb6-9714-45de778c1be4
relation.isAuthorOfPublication.latestForDiscoveryf1512137-328a-4bb6-9714-45de778c1be4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AlievaT51libre.pdf
Size:
85.81 KB
Format:
Adobe Portable Document Format

Collections