Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A separation bound for non-Hamiltonian differential equations with proper first integrals

dc.contributor.authorGascón, Francisco G.
dc.contributor.authorPeralta Salas, Daniel
dc.contributor.authorRuiz Sancho, Jesús María
dc.date.accessioned2023-06-20T18:43:05Z
dc.date.available2023-06-20T18:43:05Z
dc.date.issued2000-05
dc.description.abstractIt is shown that when a dynamical system X0 with a proper set of global first integrals is perturbed, the phase space region accessible to the orbits of the perturbed vector field X0+Xp is bounded (we are assuming here that the time variable runs over a finite interval). A polynomial new bound is obtained for the separation between the solutions of X0 and X0+Xp. Perturbations near an equilibrium point of X0 are also considered.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20984
dc.identifier.doi10.1063/1.533280
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://jmp.aip.org/resource/1/jmapaq/v41/i5/p2922_s1
dc.identifier.relatedurlhttp://jmp.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58415
dc.issue.number5
dc.journal.titleJournal of Mathematical Physics
dc.language.isoeng
dc.page.final2930
dc.page.initial2922
dc.publisherAmerican Institute of Physics
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordDynamical system
dc.subject.keywordglobal first integrals
dc.subject.keywordorbits
dc.subject.keywordequilibrium point
dc.subject.keywordpartial differential equations
dc.subject.keywordperturbation theory
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleA separation bound for non-Hamiltonian differential equations with proper first integrals
dc.typejournal article
dc.volume.number41
dcterms.referencesV. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, Berlin, 1980); N. Nekoroshev, Russ. Math. Surv. 32, 1 (1977); S. Coffey, A. Deprit, and B. Miller, Celest. Mech. 39, 365 (1986); A. Celletti and L. Ferrara, ibid. 64, 261 (1996). V. Berbyuk, J. Appl. Math. Mech. 56, 747 (1992). J. Moser, Commun. Pure Appl. Math. 23, 609 (1970). A. Weinstein, Invent. Math. 20, 47 (1973); Bull. Am. Math. Soc. 77, 814 (1971); A. Markeev and A. Sokolski, J. Appl. Math. Mech. 42, 52 (1978). O. Christov, J. Math. Phys. 35, 3448 (1994). J. Duistermaat, Commun. Pure Appl. Math. 33, 687 (1980); E. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics, (Springer, Berlin, 1971); Y. Hagihara, Celestial Mechanics, Vol. II, Perturbation Theory (MIT, Cambridge, MA, 1972); H. Hestenes, New Foundations of Classical Mechanics (Kluwer, Dordrecht, 1993). E. Barbashin, Introduction to the Theory of Stability (Noorhoff, Groningen, 1970); E. Hille, Lectures on Ordinary Differential Equations (Addison-Wesley, Reading, MA, 1969). E. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955). V. Kozlov, J. Appl. Math. Mech. 56, 803 (1992); M. Giordaro, G. Marmo, and C. Rubano, Inverse Probl. 9, 443 (1993). L. Landau and E. Lifchitz, Mecanique (MIR, Moscow, 1965); A. Weinstein, Invent. Math. 20, 47 (1973); H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1965). Y. Chouquet-Bruhat, C. DeWitt-Morette, and M. Dillard, Analysis, Manifolds and Physics (North Holland, Amsterdam, 1978). J. Bochnak, M. Coste, and M. F. Roy, Geometrie Algebraic Reelle (Springer, Berlin, 1987). R. Narasimhan, Analysis on Real and Complex Manifolds, Adv. Studies in Pure Math. 1 (North Holland, Amsterdam, 1968). R. Thom, Commun. Math. Helv. 123, 17 (1954).
dspace.entity.typePublication
relation.isAuthorOfPublicationa6d5c814-2809-4e3f-9994-64085621a568
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscoverya6d5c814-2809-4e3f-9994-64085621a568

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RuizSancho39.pdf
Size:
400.59 KB
Format:
Adobe Portable Document Format

Collections