Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Proof of Schubert's conjectures on double contacts.

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorMallavibarrena Martínez de Castro, Raquel
dc.contributor.authorSols Lucía, Ignacio
dc.date.accessioned2023-06-20T18:41:53Z
dc.date.available2023-06-20T18:41:53Z
dc.date.issued1990
dc.descriptionProceedings of the conference held in Sitges, June 1–6, 1987
dc.description.abstractThe purpose of the paper under review is to give a proof of six formulas by Schubert (two of which he proved and four of which he only conjectured) concerning the number of double contacts among the curves of two families of plane curves. The method consists in finding bases of the Chow groups of the Hilbert scheme of length 2 subschemes of the point- line incidence variety. This approach turns out to be much simpler than the one using the space of triangles as suggested by Schubert. As a byproduct, the authors obtain proofs of the classical formulas on triple contacts (i.e., single contacts of third order) between two such families of curves
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20367
dc.identifier.doi10.1007/BFb0084039
dc.identifier.issn0075-8434
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007%2FBFb0084039?LI=true
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58341
dc.journal.titleLecture notes in mathematics
dc.page.final29
dc.page.initial1
dc.publisherSpringer
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.7
dc.subject.keywordflag variety
dc.subject.keywordnumber of double contacts
dc.subject.keywordfamilies of plane curves
dc.subject.keywordChow groups
dc.subject.keywordtriple contacts
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleProof of Schubert's conjectures on double contacts.
dc.typejournal article
dc.volume.number1436
dcterms.referencesBialynicki-Birula, A. Some properties of the descompositions of algebraic varieties determined by actions of a torus. Bulletin de l'Acad. Polonaise des Sciences. Série des sci. math. astr. et phys. Vol. 24, no 9 (1976), pp. 667–674. Byalynicki-Birula, A. Some theorems on actions of algebraic groups. Ann. of Math. Vol. 98. no 3 (1973) pp. 480–497. Elencwajg, G., Le Barz, P. Explicit computations in Hilb3ℙ2, in Algebraic Geometry. Sundance 1986 (A. Holme and R. Speiser eds.), Lect. Notes in Math. 1311,Springer-Verlag, pp. 76–100. Fulton, W. Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag (1984). Hartshorne, R. Algebraic Geometry, Springer-Verlag, GTM 52, 1977. Kleiman, S. The transversality of a general translate, Compositio Math. 38 (1974), 287–297. Mallavibarrena, R., Sols, I. Bases for the Chow groups of the Hilbert scheme of points in the plane. To appear in Compositio Math. Roberts, J.-Speiser, R. Enumerative Geometry of triangles, I, II, III. Comm. in Alg. 12(10) 1213–1255 (1984) Roberts, J.-Speiser, R. Enumerative Geometry of triangles, I, II, III. Comm. in Alg. 14(1), 155–191 (1986) 15(9), 1929–1966 (1987). Roberts, J.-Speiser, R. Enumerative Geometry of triangles, I, II, III. Comm. in Alg. 15(9), 1929–1966 (1987). Rosselló, F. Thesis, Univ. of Barcelona (forthcoming). Rosselló, F., Xambó, S. Computing Chow groups, in: Algebraic Geometry, Sundance 1986 (eds.: A. Holme and R. Speiser), Lect. Notes in Math. 1311, pp. 220–234. Schubert, H. Anzahlgeometrische Behandlung des Dreiecks. Math. Ann. 17 (1880) 153–212. Serre, J.P. Algèbre Locale. Multiplicités. LNM 11 (1965).
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Collections