Prediction of air pollutants PM10 by ARBX(1) processes
| dc.contributor.author | Álvarez Liébana, Javier | |
| dc.contributor.author | Ruiz Medina, María Dolores | |
| dc.contributor.editor | Langousis, Andreas | |
| dc.date.accessioned | 2024-01-24T10:55:22Z | |
| dc.date.available | 2024-01-24T10:55:22Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | This work adopts a Banach-valued time series framework for component-wise estimation and prediction, from temporal correlated functional data, in presence of exogenous variables. The strong-consistency of the proposed functional estimator and associated plug-in predictor is formulated. The simulation study undertaken illustrates their large-sample size properties. Air pollutants PM10 curve forecasting, in the Haute-Normandie region (France), is addressed by implementation of the functional time series approach presented. | en |
| dc.description.department | Depto. de Estadística y Ciencia de los Datos | |
| dc.description.faculty | Fac. de Estudios Estadísticos | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Economía y Competitividad (España) | |
| dc.description.sponsorship | European Commission | |
| dc.description.status | pub | |
| dc.identifier.citation | Álvarez-Liébana J, Ruiz-Medina MD (2019) Prediction of air pollutants PM10 by ARBX(1) processes. Stoch Environ Res Risk Assess 33:1721–1736. https://doi.org/10.1007/s00477-019-01712-z | |
| dc.identifier.doi | 10.1007/s00477-019-01712-z | |
| dc.identifier.essn | 1436-3259 | |
| dc.identifier.officialurl | https://doi.org/10.1007/s00477-019-01712-z | |
| dc.identifier.relatedurl | https://link.springer.com/article/10.1007/s00477-019-01712-z | |
| dc.identifier.relatedurl | https://link.springer.com/journal/477 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/95035 | |
| dc.issue.number | 10 | |
| dc.journal.title | Stochastic Environmental Research and Risk Assessment | |
| dc.language.iso | eng | |
| dc.page.final | 1736 | |
| dc.page.initial | 1721 | |
| dc.publisher | Springer Nature | |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
| dc.rights.accessRights | restricted access | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.cdu | 512.642 | |
| dc.subject.cdu | 551.5 | |
| dc.subject.cdu | 519.246.8 | |
| dc.subject.keyword | Air pollutants forecasting | |
| dc.subject.keyword | Banach spaces | |
| dc.subject.keyword | Functional time series | |
| dc.subject.keyword | Meteorological variables | |
| dc.subject.keyword | Strong consistency | |
| dc.subject.ucm | Análisis funcional y teoría de operadores | |
| dc.subject.ucm | Meteorología (Física) | |
| dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
| dc.subject.unesco | 2509 Meteorología | |
| dc.title | Prediction of air pollutants PM10 by ARBX(1) processes | en |
| dc.type | journal article | |
| dc.type.hasVersion | VoR | |
| dc.volume.number | 33 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | cb530a87-36bd-49bf-be31-3d219d0ba5f5 | |
| relation.isAuthorOfPublication.latestForDiscovery | cb530a87-36bd-49bf-be31-3d219d0ba5f5 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Prediction_of_air_pollutants.pdf
- Size:
- 2.04 MB
- Format:
- Adobe Portable Document Format

