Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Artificial Intelligence in Slow Journalism: Journalists’ Uses, Perceptions, and Attitudes

dc.contributor.authorAlbizu-Rivas, Iban
dc.contributor.authorParratt Fernández, Sonia
dc.contributor.authorMera Fernández, María Montserrat
dc.date.accessioned2024-12-09T15:16:21Z
dc.date.available2024-12-09T15:16:21Z
dc.date.issued2024-12-04
dc.description.abstractThrough long-form, creative, high-quality stories, slow journalism seeks to counteract the effects of speed and immediacy in news production and consumption primarily driven by technological advancements. The advantages of artificial intelligence (AI) in journalism include generating and enhancing content, reducing workloads, and consequently giving journalists more time for non-routine and creative tasks. This raises the question of where AI fits into slow journalism. Twenty-one semi-structured interviews were conducted with practitioners of slow journalism in Spain to explore their use, attitudes, and perceptions of AI in their work. The findings indicate that the interviewees make rudimentary use of AI tools, and their attitudes range from a slight lack of interest to a willingness to learn more about them, alongside concerns regarding ethical boundaries and the potential for job losses. They assert that they have a moral and human responsibility when producing stories that AI cannot enhance in terms of quality, creativity, and emotional depth. It can be concluded that AI offers little to ‘slow’ journalists due to the significant limitations in enhancing long-form reporting. At most, it may enable them to streamline repetitive and non-creative work, thereby allowing the depth required in slow journalism, at least in its current state of development.
dc.description.departmentDepto. de Periodismo y Comunicación Global
dc.description.facultyFac. de Ciencias de la Información
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Innovación, Ciencia y Universidades (España)
dc.description.statuspub
dc.identifier.citationAlbizu-Rivas, Iban, Sonia Parratt-Fernández, and Montse Mera-Fernández. 2024. Artificial Intelligence in Slow Journalism: Journalists’ Uses, Perceptions, and Attitudes. Journalism and Media 5: 1836–1850. https://doi.org/10.3390/ journalmedia5040111
dc.identifier.doi10.3390/journalmedia5040111
dc.identifier.essn2673-5172
dc.identifier.officialurlhttps://doi.org/10.3390/journalmedia5040111
dc.identifier.relatedurlhttps://www.mdpi.com/2673-5172/5/4/111
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112251
dc.journal.titleJournalism and Media
dc.language.isoeng
dc.page.final1850
dc.page.initial1836
dc.publisherMultidisciplinary Digital Publishing Institute
dc.relation.projectIDPID2023-146913NB-I00
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu070
dc.subject.cdu316
dc.subject.cdu004.8
dc.subject.keywordSlow journalism
dc.subject.keywordNarrative journalism
dc.subject.keywordIn-depth journalism
dc.subject.keywordArtificial intelligence
dc.subject.keywordJournalists
dc.subject.keywordSpain
dc.subject.ucmSociología
dc.subject.ucmPeriodismo
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco63 Sociología
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleArtificial Intelligence in Slow Journalism: Journalists’ Uses, Perceptions, and Attitudes
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number5
dspace.entity.typePublication
relation.isAuthorOfPublication5daf30b7-b85f-42f1-afc9-1162d7a12350
relation.isAuthorOfPublication61ae5ee1-15a1-45e8-a594-e01a69b28290
relation.isAuthorOfPublication.latestForDiscovery5daf30b7-b85f-42f1-afc9-1162d7a12350

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IASlowJournalism.pdf
Size:
468.21 KB
Format:
Adobe Portable Document Format

Collections